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Zusammenfassung

Unser visuelles System hat zum einen die Fähigkeit, sehr ähnliche Objekte zu unter-
scheiden. Zum anderen können wir dasselbe Objekt wiedererkennen, obwohl sich
seine Abbildung auf der Netzhaut aufgrund des Blickwinkels, des Abstandes oder
der Beleuchtung stark unterscheiden kann. Diese Fähigkeit, dasselbe Objekt in un-
terschiedlichen Netzhaut-Bildern wiederzuerkennen, wird als invariante Objekterken-
nung bezeichnet und ist noch nicht sofort nach der Geburt verfügbar. Sie wird erst
durch Erfahrung mit unserer visuellen Umwelt erlernt.

Häufig sehen wir verschiedene Ansichten desselben Objektes in einer zeitlichen
Abfolge, zum Beispiel wenn es sich selbst bewegt oder wir es in unserer Hand be-
wegen, während wir es betrachten. Dies erzeugt zeitliche Korrelationen zwischen
aufeinander folgenden Netzhaut-Bildern, die dazu verwendet werden können, ver-
schiedene Ansichten desselben Objektes miteinander zu assoziieren. Theoretiker ver-
muten daher, dass eine synaptische Lernregel mit einer eingebauten Gedächtnisspur
(englisch: trace rule) dazu verwendet werden kann, invariante Objektrepräsentatio-
nen zu lernen.

In dieser Dissertation stelle ich Modelle für impulskodierende neuronale Netze
(englisch: spiking neural networks) zum Lernen invarianter Objektrepräsentationen
vor, die auf folgenden Hypothesen beruhen:

1. Anstelle einer synaptischen trace rule kann persistente Spike-Aktivität von ver-
netzten Neuronengruppen als eine Gedächtnis-Spur für Invarianz-Lernen die-
nen.

2. Kurzreichweitige laterale Verbindungen ermöglichen das Lernen von selbst
organisierenden topographischen Karten, welche neben räumlichen auch zeit-
liche Korrelationen abbilden.

3. Wird ein solches Netzwerk mit Bildern von kontinuierlich rotierenden Objek-
ten trainiert, so kann es Repräsentationen lernen, in denen Ansichten dessel-
ben Objekts benachbart sind. Derartige Objekttopographien können invariante
Objekterkennung ermöglichen.

4. Das Lernen von Repräsentationen sehr ähnlicher Muster kann durch anpas-
sungsfähige inhibierende Feedback-Verbindungen ermöglicht werden.

Die in Kapitel 3.1 vorgestellte Studie legt die Implementierung eines impulsko-
dierenden neuronalen Netzes dar, an welchem die ersten drei Hypothesen überprüft
wurden. Das Netzwerk wurde mit Stimulus-Sets getestet, in denen die Stimuli in
zwei Merkmalsdimensionen so angeordnet waren, dass sich der Einfluss von zeitli-
chen und räumlichen Korrelationen auf die gelernten topographischen Karten tren-
nen ließ. Die entstandenen topographischen Karten wiesen Muster auf, welche von
der zeitlichen Reihenfolge der beim Lernen präsentierten Objektansichten abhin-
gen. Unsere Ergebnisse zeigen, dass durch die Zusammenfassung der neuronalen
Aktivitäten aus einer lokalen Nachbarschaft der topographischen Karten invariante
Objekterkennung ermöglicht wird.



Das Kapitel 3.2 beschäftigt sich mit der vierten Hypothese. In dieser Publikation
wurden die Untersuchungen dazu beschrieben, wie adaptive Feedback-Inhibition
(AFI) die Fähigkeit eines Netzwerkes verbessern kann, zwischen sehr ähnlichen
Mustern zu unterscheiden. Die Ergebnisse zeigen, dass mit AFI schneller stabile
Muster-Repräsentationen gelernt wurden und dass Muster mit einem höheren Grad
an Ähnlichkeit unterschieden werden konnten als ohne AFI.

Die Ergebnisse von Kapitel 3.1 zeigen eine funktionale Rolle für topographische
Objekt-Repräsentationen auf, welche aus dem inferotemporalen Kortex bekannt sind,
und erklären, wie diese sich herausbilden können. Das AFI-Modell setzt einen Aspekt
der Predictive Coding-Theorie um: die Subtraktion einer Vorhersage vom tatsächli-
chen Input eines Systems. Die erfolgreiche Implementierung dieses Konzepts in ei-
nem biologisch plausiblen Netzwerk impulskodierender Neuronen zeigt, dass das
Predictive Coding-Prinzip in kortikalen Schaltkreisen eine Rolle spielen kann.
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Abstract

On one hand, the visual system has the ability to differentiate between very similar
objects. On the other hand, we can also recognize the same object in images that vary
drastically, due to different viewing angle, distance, or illumination. The ability to
recognize the same object under different viewing conditions is called invariant object
recognition. Such object recognition capabilities are not immediately available after
birth, but are acquired through learning by experience in the visual world.

In many viewing situations different views of the same object are seen in a tem-
poral sequence, e.g. when we are moving an object in our hands while watching it.
This creates temporal correlations between successive retinal projections that can be
used to associate different views of the same object. Theorists have therefore pro-
posed a synaptic plasticity rule with a built-in memory trace (trace rule).

In this dissertation I present spiking neural network models that offer possible
explanations for learning of invariant object representations. These models are based
on the following hypotheses:

1. Instead of a synaptic trace rule, persistent firing of recurrently connected groups
of neurons can serve as a memory trace for invariance learning.

2. Short-range excitatory lateral connections enable learning of self-organizing
topographic maps that represent temporal as well as spatial correlations.

3. When trained with sequences of object views, such a network can learn repre-
sentations that enable invariant object recognition by clustering different views
of the same object within a local neighborhood.

4. Learning of representations for very similar stimuli can be enabled by adaptive
inhibitory feedback connections.

The study presented in chapter 3.1 details an implementation of a spiking neural
network to test the first three hypotheses. This network was tested with stimulus
sets that were designed in two feature dimensions to separate the impact of tempo-
ral and spatial correlations on learned topographic maps. The emerging topographic
maps showed patterns that were dependent on the temporal order of object views
during training. Our results show that pooling over local neighborhoods of the to-
pographic map enables invariant recognition.

Chapter 3.2 focuses on the fourth hypothesis. There we examine how the adaptive
feedback inhibition (AFI) can improve the ability of a network to discriminate between
very similar patterns. The results show that with AFI learning is faster, and the
network learns selective representations for stimuli with higher levels of overlap
than without AFI.

Results of chapter 3.1 suggest a functional role for topographic object representa-
tions that are known to exist in the inferotemporal cortex, and suggests a mechanism
for the development of such representations. The AFI model implements one aspect
of predictive coding: subtraction of a prediction from the actual input of a system. The
successful implementation in a biologically plausible network of spiking neurons
shows that predictive coding can play a role in cortical circuits.





ix

List of Abbreviations

AFI Adaptive Feedback Inhibition
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
AP Action Potential
CNN Convolutional Neural Network
CT Continuous Transformation
EPSC Excitatory Post-Synaptic Current
EPSP Excitatory Post-Synaptic Potential
GABA Gamma-Aminobutyric Acid
IPSC Inhibitory Post-Synaptic Current
IPSP Inhibitory Post-Synaptic Potential
LIF Leaky Integrate-and-Fire
LTD Long Term Depression
LTP Long Term Potentiation
NMDA N-methyl-D-aspartate
NMDAR N-methyl-D-aspartate Receptor
SNN Spiking Neural Network
SOM Self Organizing Map
STDP Spike Timing Dependent Plasticity
WTA Winner-Take-All





xi

Contents

Eidesstattliche Erklärung iii

Zusammenfassung v

Abstract vii

1 Introduction 1
1.1 Vision in Biological and Artificial Systems . . . . . . . . . . . . . . . . . 1
1.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Neural Network Models for Object Recognition . . . . . . . . . . . . . 3
1.4 Hypotheses and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Methodological Background: Simulating Neural Networks 11
2.1 Modeling: The Art of Simplification . . . . . . . . . . . . . . . . . . . . 11
2.2 Model Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Synaptic Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Cellular Mechanisms of Neural Plasticity . . . . . . . . . . . . . . . . . 17
2.6 Synaptic Learning Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Competition: The Winner Takes it All . . . . . . . . . . . . . . . . . . . 19

3 Publications 21
3.1 Spatiotemporal Correlations and Topographic Maps . . . . . . . . . . . 21
3.2 Adaptive Feedback Inhibition . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Discussion 51
4.1 Invariant Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Trace Learning in Spiking Neural Networks . . . . . . . . . . . . . . . . 53
4.3 Sustained Intrinsic Activity . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Empirical Evidence for the Role of Temporal Contiguity . . . . . . . . . 55
4.5 Adaptive Feedback Inhibition and Predictive Coding . . . . . . . . . . 56
4.6 Combining AFI and Topographic Map Learning . . . . . . . . . . . . . 58
4.7 Why Study Spiking Neural Networks? . . . . . . . . . . . . . . . . . . . 59
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 61





1

Chapter 1

Introduction

1.1 Vision in Biological and Artificial Systems

Vision is highly important in our daily life, which is also reflected in our language
(San Roque et al., 2015). Vision is not just about detecting light, but about recon-
structing and interpreting our environment from the light patterns that activate pho-
toreceptors in the retina. Therefore, understanding the principles of visual process-
ing in the brain significantly contributes to our understanding of the human brain
itself.

In recent years, test projects with self driving cars on public roads have been
started (Waldrop, 2015; Zoellick et al., 2019). This was made possible by the progress
of modern computer vision systems, which use multi layered architectures with a
processing hierarchy that is inspired by insights gained from studying the human
and mammalian visual system (Chen et al., 2019). This exemplifies how empirical
and theoretical neuroscience research has translated into technical solutions that can
improve our lives. Yet, there are still many unsolved problems, such as learning
of object representations from a continuous stream of inputs, without relying on
training with huge labeled datasets. New insights into the way our brain achieves
visual object recognition can trigger further progress.

Many of the computer vision systems used in cameras, self driving cars, or at
large internet companies, are trained in a supervised way using huge databases of
images that have been categorized and labeled manually by humans. In contrast,
humans do not need a teacher to learn basic object recognition. We learn to recognize
faces and objects through experience with the visual world (Ruff, Kohler, and Haupt,
1976). Temporal contiguity can provide cues that can be used in neural networks to
associate different views of the same object. Some studies have already established
that this principle plays a role in humans (Wallis and Bülthoff, 2001) and animals
(Wood and Wood, 2018). But how exactly the brain makes use of temporal cues is
still unknown.

The basic computational units in technical solutions for object recognition rep-
resent neural activity as an average firing rate, thereby abstracting away individual
action potentials (APs, also called spikes). This approach simplifies computations
and has lead to huge progress, because it enables simulations with large numbers
of neurons. But information processing in the brain probably also relies on mecha-
nisms that make use of the precise timing of individual spikes (Gollisch and Meister,
2008).

In this dissertation I will present two studies that address complementary prob-
lems of visual object recognition. The first study addresses the question of how
objects can be recognized despite large variations of their retinal projections due
to conditions like viewing angle, distance, and illumination (Michler, Eckhorn, and
Wachtler, 2009, see section 3.1). The second study addresses how objects can be
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differentiated from each other despite large similarities (Michler, Wachtler, and Eck-
horn, 2006, see section 3.2). In both studies we developed spiking neural networks
that adjust their internal connections through unsupervised learning.

In the following sections of this introduction I will provide some background
on the relationship of vision and learning, and neural network models for object
recognition in order to explain the objectives and hypotheses of this dissertation.

1.2 Learning

Visual Perception Depends on Learning

When we look around, we easily recognize the face of a friend we want to talk to, or
an apple we want to eat. This happens within a fraction of a second (Thorpe, Fize,
and Marlot, 1996). But we are not born with these abilities. While non-mammals
have innate abilities to navigate (Homberg et al., 2011), detect food (Lettvin et al.,
1959), or recognize potential mates and enemies (Land, 1969; Dorosheva, Yakovlev,
and Reznikova, 2011), many aspects of mammal and human vision are learned.

Even the fundamental ability to discriminate between horizontal and vertical
edges relies on experience with the visual world, as was demonstrated by the ground-
breaking experiments of Hubel and Wiesel (1970) and Blakemore and Cooper (1970)
with cats.

For kittens it was shown that depriving visual input to one eye during a critical
period in their development (first three months after birth) drastically reduced the
response of neurons in the striate cortex to input from that eye (Hubel and Wiesel,
1970).

Neurons in the striate cortex of cats selectively respond to visual edges with a
specific orientation (Hubel and Wiesel, 1962). In normal cats, optimal orientation is
uniformly distributed. However, when kittens were exclusively exposed to vertical
edges during the first five months of their lives, fewer cells were found with an
optimal orientation perpendicular to the orientations the kittens had been exposed
to. Also, their ability to see horizontal contours was drastically impaired (Blakemore
and Cooper, 1970).

A reductionist approach leads to the question of how selectivity for the orienta-
tion of edges or representations of visual objects can emerge through learning on a
cellular level.

Synaptic Plasticity and Hebbian Learning

How can experience induce long lasting changes of our perception and behavior?
Cajal (1894) was the first to suggest that changes in the synapse are the cellular basis
for learning.

Studies on hippocampus fibers have revealed experimental proof for Cajal’s pre-
diction. After repetitive stimulation, Bliss and Lømo (1973) found long lasting po-
tentiation of excitatory postsynaptic potential (EPSP) amplitudes. This is referred
to as long term potentiation (LTP). With prolonged low frequency stimulation hip-
pocampal synapses also show a form of long-lasting synaptic depression (long term
depression, LTD). Hebb (1949) postulated a principle explaining how these changes
take place:

"When an axon of cell A is near enough to excite cell B or repeatedly
or consistently takes part in firing it, some growth or metabolic change
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takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased." (Donald Hebb, 1949)

Evidence for such learning mechanisms has been found by Markram et al. (1997),
using whole-cell voltage recordings from neighboring neurons. They showed that
coincidence of postsynaptic action potentials (APs) and unitary EPSPs induce chan-
ges in EPSPs. Bi and Poo (1998) measured how LTP and LTD occur depending on the
precise timing of pre- and postsynaptic APs. This spike timing dependent plasticity
(STDP) fulfills Hebb’s postulate and enables synapses to work as causality detectors.
The cellular mechanisms underlying STDP will be reviewed in more detail in section
2.5.

After examining the cellular level, I will now turn to the question of how net-
works of neurons and synapses exhibiting Hebbian plasticity can learn to represent
and recognize visual objects. Since it is difficult to imagine how thousands of cells
interact, computer simulations of neural networks can help to gain insights into the
emergence of higher level properties, like view point invariance, from lower level
processes.

1.3 Neural Network Models for Object Recognition

Standard Model for Pattern Recognition

When we see an object, it reflects photons that hit the retina, where photoreceptors
and ganglion cells transform the information into patterns of neural activity. Thus,
for the brain object recognition is a problem of pattern recognition. Many modern
neural networks build upon the concepts first developed in the perceptron model
(Rosenblatt, 1958). In its basic form it consists of three groups of neurons: a "projec-
tion area" AI , which receives retinal input, an "association area" AI I , and "response
cells" R1, R2, ..., Rn, which represent the output of the model. Such groups of neurons
that share a functional role and are in the same level of a processing hierarchy are
also often referred to as layers (Figure 1.1).

feedback

lateral

feedforward

layer
N-1

layer
N

Figure 1.1: Feedforward, feedback, and lateral connections. Adapted from
Intrator and Edelman (1997). Hierarchical neural networks are structured in
layers. Connections from lower to higher levels are called feedforward, while
feedback connections project from a higher level layer back to a lower level layer.
Lateral connections connect neurons within a layer.

The activity value of a neuron is calculated from a weighted sum of the activity of
its inputs. The strength of a connection is therefore often referred to as a weight, cor-
responding to the synaptic efficacy of biological neurons. In the perceptron-model of
Rosenblatt (1958), weights of feedforward connections from AI to AI I and from AI I
to response cells are adjusted according to an error signal: the difference between
desired and actual output. For perceptrons with more layers (multi layer perceptrons,
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MLPs), Werbos introduced a learning algorithm in which the error signal is propa-
gated backwards through the processing hierarchy to update weights (Werbos, 1975;
Werbos, 1990). This algorithm is called backpropagation and is a form of supervised
learning, because the desired output of the network must be known beforehand to
control the learning process. MLPs have been successfully applied to solve complex
pattern recognition problems (e.g. recognition of handwritten characters, Jameel
and Kumar, 2018).

To adjust weights in an unsupervised manner, a Hebbian plasticity rule can be
used to calculates weight changes from the activity of pre- and postsynaptic neurons
(section 1.2). The rule allows neurons to adjust the weights of their afferent synapses
to match the activity pattern of presynaptic input neurons whenever a postsynap-
tic spike occurs. Lateral inhibition (Figure 1.1) can enhance activity differences and
thereby prevent that all neurons learn the same pattern (Grossberg, 1973). When
only one neuron within a layer is allowed to fire this is called a winner-take-all (WTA)
network.

However, object recognition is more than just pattern recognition, since multiple
input patterns can represent the same object. The challenge to generalize across
multiple patterns and classify them as the same object is a fundamental problem
in biological and machine vision (Simard et al., 1991; Zhang, 2019). Gibson (1966)
hypothesized that ”constant perception depends on the ability of the individual to
detect the invariants.”

Complex Cells as a Model for Invariance

When we watch a moving object, or make an eye movement between different points
on an object, the retinal activity pattern changes drastically. To recognize the object,
an internal representation is needed that is invariant with respect to these changes.
Hubel and Wiesel (1962) have observed response properties in the cat visual cortex
that could provide a basis for position invariance. Whereas some cells selectively
responded to visual edges of a certain orientation at a specific position in the vi-
sual field ("simple cells"), other cells showed a similar selectivity for orientation, but
responded equally strong for edges at different positions ("complex cells").

A model to explain these response properties was proposed by Hubel and Wiesel
(1962): complex cells receive input from simple cells that are selective for the same
orientation (S1 to C1 connections in Figure 1.2). Fukushima (1980) has proposed
that this principle of simple and complex cells is repeatedly applied within the hier-
archy of the visual system. Fukushima’s neocognitron model consists of a hierarchy
of modules, each of which is comprised of a simple cell and a complex cell layer.

Riesenhuber and Poggio (1999) adopted this concept in their HMAX model: com-
plex cells are "pooling" from groups of simple cells by performing a "MAX" opera-
tion on the output of simple cells with the same orientation preference (the output
of the complex cell is equal to the maximum output of a set of simple cells with the
same orientation but different position). The next layer in the hierarchy consists of
"composite feature cells" (S2 cells in Figure 1.2), which perform a weighted sum over
the output of complex cells. Their output is then pooled again to achieve tolerance
for some transformations of the composite features.

The same principle is used in Convolutional Neural Networks (CNNs or ConvNets)
which use alternating convolution and pooling layers (LeCun et al., 1998; LeCun,
Bengio, and Hinton, 2015). Whereas many models of the visual system share the
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- selective for orientation
  and position
- weighted sum

Simple Cells (S1)

- selective for orientation,
  invariant for position,
- pooling over simple cells
  performing MAX operation

Complex Cells (C1)

- selective for combinations
  of complex cell features
- weighted sum from C1

Second Order Simple Cells (S2)

- pooling over S2 cells
  performing MAX operation

Second Order Complex Cells (C2)

Figure 1.2: Sketch of the HMAX model (Riesenhuber and Poggio, 1999). Sim-
ple cells (S1) are selective for the precise position oriented edges, calculating a
weighted sum across their inputs, cells in the lateral geniculate nucleus (LGN)
with linearly aligned receptive field centers. Complex cells (C1) pool over sim-
ple cells with the same orientation preference but different positions (as pro-
posed by Hubel and Wiesel, 1962). Pooling can be achieved with a MAX oper-
ation: output of a C1 cell is equal to the maximum output of its input S1 cells.
Second order simple cells (S2) receive input from C1, performing a weighted
sum operation. Therefore, they are selective for specific combinations of C1
features. Second order complex cells (C2) pool over S2 cells, thereby achieving
higher order invariance. The example shows a C2 cell selective for corners of
a specific opening angle and invariant with respect to the rotation angle.
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concept of simple and complex cells, they differ in the way the underlying connec-
tivity is established, and it still remains unknown how representations for invariant
object recognition are learned in the brain.

Supervised vs Unsupervised Learning

How can a network determine which pattern detectors belong together as repre-
sentations of the same object? Supervised learning using the backpropagation (BP)
algorithm (Werbos, 1990; Rumelhart, Hinton, and Williams, 1986) has been applied
successfully to solve complex object recognition problems, even surpassing human
performance in specific classification tasks (He et al., 2015). For these algorithms,
huge sets of training stimuli are needed for which the correct classification is al-
ready known (images are "labeled"). Each item of a training data set is presented
to the network, and the difference between the correct output and the actual output
is used as an error signal to adjust weights of internal synapses. The error signal is
propagated backwards through the hierarchy of layers from the output layer to the
input layer, hence the name "backpropagation".

While this approach is viable for technical systems, humans and animals do not
learn object recognition by relying on pre-classified stimulus sets. Further, a num-
ber of issues have been raised that make backpropagation biologically unplausible
(Bengio et al., 2015).

The brain likely uses unsupervised learning mechanisms to build internal repre-
sentations for object recognition that rely only on the interactions within the genet-
ically predetermined network architecture, mechanisms for synaptic plasticity, and
experience with real world input.

Fukushima proposed a mechanism for unsupervised learning of simple cell con-
nections (Fukushima, 1975; Fukushima, 1980). In this model, one unit with the
strongest activation within a group of competing units (single cells receiving input
from the same position of the visual field) is selected for learning after each presenta-
tion of an input pattern. Weights are adjusted in proportion to the activity of afferent
units. This is a winner-take-all (WTA) algorithm and can be implemented biologi-
cally with a combination of lateral inhibition and Hebbian plasticity. This learning
mechanism is based on similarity. Simple cells with afferent connections that most
closely resemble the current input pattern win the competition, and weights of in-
coming connections belonging to the current input pattern are increased. However,
for learning invariant representations this is not optimal, as I will explain in the next
section.

Invariant Representations based on Temporal Proximity

To recognize objects under different viewing conditions, relying only on spatial cor-
relations (i.e. similarity) is not sufficient: The frontal and profile views of one face
result in very different retinal projections. On the other hand, frontal views of dif-
ferent faces can be very similar. Any neural learning mechanism that solely relies on
similarity would therefore group images of different faces from the same viewing
angle together, instead of associating different views of the same face.

In many natural viewing situations such as moving around while watching an
object, or examining an object in our hands while rotating it, we see different views
of that object successively (Figure 1.3). Therefore, temporal proximity can provide a
cue for grouping retinal input patterns that belong to the same object. Földiák (1991)
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Figure 1.3: Slow and fast changing features. In natural viewing situations,
e.g. watching an object in our hands while rotating it, properties related to
the viewing angle change fast and continuously, whereas object identity stays
constant until we decide to look at a different object.

has shown how temporal proximity can be utilized to learn invariant representa-
tions. He proposed a new synaptic learning rule that incorporates a decaying trace
of previous cell activity:

"A learning rule is therefore needed to specify these modifiable simple-
to-complex connections. A simple Hebbian rule, which depends only
on instantaneous activations, does not work here as it only detects over-
lapping patterns in the input and picks up correlations between input
units." (Földiák, 1991)

Földiák demonstrated in a neural network that uses this trace rule for adjusting
forward connections, how orientation selective cells emerge that are similar to com-
plex cells in the primary visual cortex (Hubel and Wiesel, 1962). After the network
was trained with sequences of moving edges, these cells showed high selectivity for
a preferred orientation but responded invariantly to the same orientation at different
positions. When applied in a hierarchical network, the trace rule can enable invari-
ant responses to complex stimuli such as hand written characters (Wallis, 1996) or
faces (Wallis and Rolls, 1997).

Several mechanisms have been proposed by which something equivalent to the
trace rule could be realized in the brain. First, high neural activity could trigger the
release of chemicals such as nitric oxide to be used as a signal for learning (Földiák,
1992). Second, binding of glutamate to N-methyl-D-aspartate receptors (NMDAR)
for 100 ms or more could provide a cellular basis for the trace rule (Rolls et al., 1992;
Földiák, 1992). Third, the trace rule might not be implemented within a single cell.
Instead, persistent firing of neurons could enable the association of subsequent im-
ages (Rolls and Tovee, 1994). One aim of this dissertation is to explore this third
mechanism in a spiking neural network (section 3.1).

Self-Organizing Topographic Maps

In many cortical areas response properties of neurons are mapped continuously
along the cortical surface (Kaas, 1997). E.g. a topography for orientation was found
in the primary visual cortex (for example Bosking et al., 1997), whereas a topogra-
phy for stimulus frequency was found in early areas of the auditory cortex (Saenz
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time

Cat Car

E1: Map Layer

E2: Output Layer

topographic map
representing tempral
correlations

receiving input from local
neighborhoods in Map Layer

Figure 1.4: Sketch of the invariance mechanism proposed by Michler, Eck-
horn, and Wachtler (2009). Different views of the same object are experienced
in a sequence. Because of their temporal correlations, views of the same ob-
ject are represented by neighboring neurons in the map layer E1. Neurons in
the output layer E2 receive input from local neighborhoods in E1. They exhibit
invariant responses because of the object topography in E1.

and Langers, 2014; Leaver and Rauschecker, 2016). Experimental data measured in
the inferotemporal cortex suggests that higher-order features related to invariant ob-
ject representations might be mapped in a continuous manner (Wang, Tanaka, and
Tanifuji, 1996; Tanaka, 1996; Tanaka, 2003).

Self-Organizing Topographic Maps (SOMs) are a type of neural network models
that explain how a topographic order of response properties can emerge based on
correlations in their sensory input (Kohonen, 1982; Choe and Miikkulainen, 1998).
A SOM network is composed of two dimensional layers of neurons. Each neuron
has short range excitatory lateral connections to its neighbors. Competition is in-
troduced by long range lateral inhibitory connections. After training, neighboring
neurons show selectivity for similar stimulus patterns. By integrating over a local
neighborhood of neurons, a readout mechanism (e.g. a layer of output neurons) can
achieve a generalization across sets of similar stimuli.

1.4 Hypotheses and Objectives

The aim of this work is to gain insights into mechanisms underlying visual object
recognition in the brain, by simulating the proposed mechanisms in biologically
plausible spiking neural networks. Specifically, four hypotheses were investigated.
The first three hypotheses are related to invariant object recognition, whereas the
fourth is concerned with the discrimination of very similar patterns.

Hypothesis 1 - Sustained Neural Activity can Serve as a Trace Rule

Whereas a lot of biological evidence is available for Hebbian synaptic plasticity
(Markram et al., 1997; Bi and Poo, 1998; Dan and Poo, 2006), no evidence for the
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existence of a synaptic trace rule as proposed by Földiák (1991) has so far been re-
ported in literature. The first hypothesis of this work is that a memory trace for
temporal proximity based learning can be provided by the intrinsic dynamics of a
network. Rolls and Tovee (1994) have found evidence for sustained firing of cortical
neurons for 200-300 ms after presentation of visual stimuli.

Short range excitatory lateral connections could enable continued firing of neu-
rons within the local neighborhood. Once activated, nearby neurons have an in-
creased chance of firing for successive stimuli. Their activity coincides with activity
caused by the next stimulus within a sequence, and Hebbian plasticity rules that op-
erate on a short time scale can capture temporal correlations on a longer time scale.

A challenge for this proposed mechanism is the balance between intrinsically
generated activity, and activity caused by feedforward connections. When excita-
tory lateral connections are too strong, intrinsic activity is not be affected by afferent
connections, and the network does not learn any representation of presented input
patterns. On the other hand, when excitatory lateral connections are too weak, per-
sistent firing can not be sustained, and there is not be a memory trace to associate
successive stimuli. Biologically plausible parameters that can influence this balance
are the proportion of NMDA and AMPA receptors, synaptic time constants, and
synaptic depression (Tsodyks, Pawelzik, and Markram, 1998)

Hypothesis 2 - Topographic Maps can Represent Temporal Correlations

In classical models of self-organizing maps (SOM; section 1.3), the structure of learned
maps reflects the statistics of spatial correlations within the set of training stimuli.
The second hypothesis is that temporal correlations can be represented in a self-
organizing map as well. Because neighboring views of the same object are often
seen in a temporal sequence, sustained firing of local groups of neurons can map
successive input patterns onto neighboring neurons (Figure 1.4). To separate the
effects of spatial and temporal correlations, I created stimulus sets with identical
spatial correlations along the axis of a 2D parameter space (named "X-parameter"
and "Y-parameter" in Figure 2 on page 26). By training the network with temporal
correlations along one axis or the other, differences between learned maps can be
attributed to changes in temporal correlations.

Hypothesis 3 - Topographic Maps can Enable Invariance for 3D Rotation

In the neocognitron model (Fukushima, 1980), complex cell layers receive input from
a local neighborhood within the preceding simple cell layer. Because simple cells
of the same layer share the same pattern of synaptic weights, but differ with re-
spect to the corresponding position in the visual field, complex cells achieve trans-
lation invariance. If the topographic order of simple cells represents 3D rotation
instead, complex cells pooling over neighboring simple cells can exhibit invariant
activity with respect to changes of the 3D viewing angle. The invariance of complex
cell responses can be tested by measuring their activity for all trained stimuli, and
then calculating tuning curves for stimulus parameters like viewing angle and object
identity (see equations 15 to 18 and Figure 3 on page 27).

The aim of chapter 3.1 is to develop a proof-of-principle for hypotheses 1 - 3 by
combining the concept of temporal proximity based learning with self-organizing
topographic maps in a spiking neural network, and testing it by using stimulus sets
that allow to separate the effects of temporal and spatial correlations.
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A - (A ∩ B) B - (A ∩ B)A B

Figure 1.5: Patterns with large overlap. Two patterns A and B with 20 active
pixels each, defined in a 10x10 grid. A and B have an overlap (A ∩ B) of 90 %
(only two out of twenty pixels differ). Suppressing the overlapping part of
input patterns enhances differences, and can improve discrimination learning.

Hypothesis 4 - Adaptive Feedback Inhibition can Improve Learning

Pattern discrimination is a prerequisite for object recognition. As our own prelimi-
nary simulations have shown, a standard approach for pattern discrimination based
on Hebbian learning and competition via lateral inhibition can achieve selectivity
for stimulus sets with moderate overlap, whereas discrimination performance dete-
riorates for high overlap (Michler, Wachtler, and Eckhorn, 2006). For very similar
patterns, output neurons that respond well to one stimulus also have a high chance
of responding well to other stimuli, because they are driven by the overlapping part
of input patterns (Figure 1.5). Suppressing that overlap therefore enhances differ-
ences and can improve pattern discrimination for very similar stimuli.

My hypothesis is that adaptive inhibitory feedback connections can enable this
overlap suppression and therefore improve pattern discrimination. The goal of the
publication presented in chapter 3.2 is to provide a proof-of-principle for this hy-
pothesis by implementing it in a network of spiking neurons with STDP based learn-
ing rules.
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Chapter 2

Methodological Background:
Simulating Neural Networks

2.1 Modeling: The Art of Simplification

Mathematical models and computer simulations can help to improve our under-
standing of complex biological systems. From models, predictions for new exper-
iments can be generated, and proposed ideas about biological mechanisms can be
explored to find out whether they actually work as proposed or not. When creating
models, many crucial decisions must be made about the level of detail or abstrac-
tion. The more biological details a model incorporates, the easier it is to relate the
model to the actual biological system. With more detail a model also grows in com-
plexity, which makes it harder to understand how it actually works. Therefore, the
goal of modeling is to simplify as much as possible, but keep the essence of what is
"important" for the way a biological system solves a problem.

In the last two decades many technical approaches have been developed to tackle
object recognition problems, using mathematical methods like Principal Component
Analysis (Nagaveni and Sreenivasulu Reddy, 2014), Independent Component Analysis
(Delac, Grgic, and Grgic, 2006), or Fourier Transformations (Westheimer, 2001; Ryu,
Yang, and Lim, 2018). Such models have greatly improved our understanding of
the problem domain. However, to understand how such mechanisms are actually
implemented in the brain, we need models that are compatible with our knowledge
about its basic building blocks.

2.2 Model Neurons

The main properties of neurons that are relevant for modeling spiking neural net-
works are the membrane potential, generation of action potentials, and synaptic
transmission. When modeling networks with large numbers of neurons, single neu-
ron models must be simplified by distinguishing between critical and non-critical
properties.

Point Neurons

In a biological neuron the membrane potential can vary across soma, dendrites and
axon. Cable theory (Rall, 1959) can be applied to calculate the spread of currents
from dendrite to soma, treating dendrites as cylinders with piecewise constant ra-
dius (Figure 2.1 B). If only the membrane potentials at the center of these cylin-
ders are considered, the cable model is discretized and reduced to a compartmental
model, which consists of a finite number of membrane patches (Figure 2.1 C). Such
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Figure 2.1: Compartmental model vs. point model. Modified from Bower and
Beeman (2003). A: Neuron with dendrite and electrodes measuring membrane
currents and potentials at the soma and at various positions on dendrites. B:
A cable model describes parts of dendrites as cylindric cables in a continuous
fashion. C: A compartmental model treats the continuous membrane surface
as a finite number of membrane patches. D: In a point model only a single
compartment is used.
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Figure 2.2: Equivalent circuits. A. Equivalent circuit for the Hodgkin-Huxley
model. Cm is the capacitance of the lipid membrane. gNa and gK are volt-
age dependent conductances for sodium and potassium ions. The leak conduc-
tance gL is a constant factor representing all other conductances (mostly for Cl−

ions). The batteries ENa, EK, EL represent reverse potentials for respective ion
currents. B. Equivalent circuit for the leaky integrate-and-fire-model. It lacks
batteries and resistors for voltage dependent sodium and potassium currents.
Instead it has a spike detector which detects when Vm crosses a threshold θ.

models are used to study interactions between dendrites and the soma. Models that
completely ignore the morphology of dendrites and treat the whole neuron as a sin-
gle compartment are called point neurons (Figure 2.1 D). Every incoming input is
treated equally, as if every synapse would target the soma. Only a single membrane
potential per neuron is calculated. While interactions between dendrites and soma
are lost, the drastically reduced computational costs of the point neuron enables sim-
ulations with a much larger number of neurons.

Hodgkin-Huxley Neuron

Many neuron models used in neural network simulations are derived from the set
of equations formulated by Hodgkin and Huxley in 1952. Figure 2.2 A shows the
equivalent circuit for the neuro membrane. The membrane is a capacitor with ca-
pacity Cm. Ionic currents are treated as resistors, coupled with a battery according
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to the equilibrium potential for the respective ions. Since ion channels for sodium
(Na+) and potassium (K+) are voltage dependent, they are treated as a regulated re-
sistances with conductance gNa and gK. Currents relying on all other non voltage
dependent channels such as Chloride (Cl−) are summarized as a single leak cur-
rent with conductance gL. Using voltage clamp experiments with the squid giant
axon, Hodgkin and Huxley developed the following set of four differential equa-
tions. They describe the dynamics of the membrane potential and the generation of
action potentials (APs, often called spikes):

CmV̇ = −
INa⏟ ⏞⏞ ⏟

ḡNam3h(V − ENa)−
IK⏟ ⏞⏞ ⏟

ḡKn4(V − EK)−
IL⏟ ⏞⏞ ⏟

gL(V − EL)−Iinput (2.1)
ṁ = αm(V)(1−m)− βm(V)m (2.2)
ḣ = αh(V)(1− h)− βh(V)h (2.3)
ṅ = αn(V)(1− n)− βn(V)n (2.4)

Differential equations 2.1 to 2.4 describe the dynamics of the membrane potential
V in the Hodgkin-Huxley model. Cm is the capacitance of the lipid membrane.
V̇ = dV(t)

dt is the temporal derivative of V. According to the charging equation for a
capacitance V̇ = I

C , the product CmV̇ is equal to the sum of all currents across the
membrane: INa + IK + IL + Iinput, where INa and IK are the sodium and potassium
ionic currents, IL the leak current and Iinput any additional input current (e.g. from
synaptic currents). The ionic currents depend on the difference of the membrane
potential V to their respective reversal potentials ENa, EK, EL, and the conductance
g for the respective ions. While the leak conductance gL is a constant, conductances
for sodium and potassium are dynamic and voltage dependent. ḡNa and ḡK are the
maximum conductances when all channels are open. m, h, and n are gating variables
with values between 0 and 1. They determine the proportion of open sodium and
potassium channels pNa = m3h and pK = n4. Equations 2.2, 2.3, 2.4 describe the
temporal evolution of m, h, and n, depending on their respective voltage dependent
variables α and β.

Because the variables in the Hodgkin-Huxley model directly represent biophysi-
cal values such as the membrane potential, it is suitable for generating numeric pre-
dictions for electrophysiological experiments. About 1200 floating point operations
(FLOPS) are needed to simulate the Hodgkin-Huxley model for 1 ms (Izhikevich,
2004). This is computationally expensive. In order to analyze neural network mech-
anisms that do not rely on the precise values of the membrane potential, simplified
models with less computational costs can be used to simulate larger numbers of
neurons.

Izhikevich Neuron

Izhikevich (2003) reduced the four dimensional Hodgkin-Huxley equations (2.1) to
the following two dimensional system:

V̇ = 0.04V2 + f V + e−U + Iinput (2.5)
U̇ = a(bV −U) (2.6)

with the auxiliary after-spike resetting:

i f (V ≥ 30mV) then
{︃

V ← c
U ← U + d (2.7)
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Figure 2.3: Comparison of computational costs and number of neuro-
computational features for various model neuron types (modified from
Izhikevich, 2004); "# of FLOPS" is an approximate number of floating point op-
erations (addition, multiplication, etc.) needed to simulate the model during a
1 ms time span. "# features" is the number of neuro-computational features as
defined by Izhikevich, e.g. the ability of a neuron model to exhibit properties
of an integrator, or whether it can exhibit burst firing. ⋆ The integrate-and-fire
model was used in Michler, Eckhorn, and Wachtler (2009). ▽ The Izhikevich
model was used in Michler, Wachtler, and Eckhorn (2006).

V and U are dimensionless variables. V represents the membrane potential. U is a
membrane recovery variable, which accounts for the activation of K+ and inactiva-
tion of Na+ ionic currents. It provides a negative feedback to V. a, b, c, d, e, f are
dimensionless parameters. With f = 5 and e = 140 the spike initiation dynamics
of the system approximates the dynamics of a cortical neuron so that the membrane
potential V has a mV scale and time t a ms scale.

The reduction to a two dimensional system lowers computational costs down to
13 FLOPS for simulating a neuron for 1 ms, while preserving many dynamic proper-
ties of the original Hodgkin-Huxley equations (Figure 2.3). Depending on the choice
of parameters, the Izhikevich model can exhibit a variety of excitability patterns.
Some examples are:

• tonic spiking: fires continuous train of spikes as long as it is stimulated

• Class 1 excitability: arbitrarily low firing rate, and large range, e.g. 2 - 100 Hz

• Class 2 excitability: no low frequency firing rate; small range, e.g. 100 - 150 Hz

• bursting: many successive spikes with high frequency

• rebound spikes: spikes after inhibitory input

• integrator: successive sub-threshold inputs can cause an AP

• resonator: successive sub-threshold inputs can cause an AP if their delay match
the frequency of the intrinsic oscillations.
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Izhikevich (2004) describes 20 neuro-computational properties that have been ob-
served in real neurons and can be reproduced with specific parameter values in the
Izhikevich model and in the Hodgkin-Huxley model. For the simulations in chapter
3.2 I used model neurons based on Izhikevich’s equations.

Leaky Integrate-and-Fire Neuron

A further simplification is the leaky integrate-and-fire (LIF) neuron, also known as the
Lapique model (Lapicque, 1907). As shown in the equivalent circuit in Figure 2.2 only
the leak current IL is considered while omitting the terms for voltage dependent
sodium and potassium ion channels.

CmV̇ = −
IL⏟ ⏞⏞ ⏟

gL(V − EL)−Iinput (2.8)
i f (V ≥ Vθ) then V ← Vreset (2.9)

The reverse potential EL for the leak current IL is equal to the resting potential. If the
membrane potential V temporarily deviates from EL (due to synaptic input currents
Iinput) it falls back to EL in an exponential decay.

Due to the missing voltage dependent currents, APs are not generated by inter-
nal dynamics of the LIF model. Instead, a threshold Vθ is applied to the membrane
potential V. Whenever the threshold is crossed, an AP is generated, and the mem-
brane potential set back to a reset value Vreset (equation 2.9). This is depicted as the
spike detector in Figure 2.2 B.

These simplifications reduce the cost to 5 FLOPS per 1 ms simulation time (see
Figure 2.3). The LIF neuron has only 3 of the 20 neuro-computational features listed
in Izhikevich (2004): it is Class 1 excitable; it can fire tonic spikes with constant
frequency, and it is an integrator. For analyzing mechanisms that do not depend on
further features like spike frequency adaptation or bursting, the LIF is a good choice.
Because of its low computational cost, large numbers of neurons can be simulated
efficiently. Therefore, it was chosen for simulating learning of topographic maps
based on spatiotemporal correlations in chapter 3.1 in a network of more than 10.000
neurons.

2.3 Layers

When describing the architecture of an artificial neural network, the term layer refers
to different levels of the processing hierarchy. Often neural networks have an input
layer, one or many processing layers (sometimes referred to as hidden layers), and an
output layer.

On the implementation level, layers are groups of neurons that share common
properties and algorithms. Neurons within a layer typically use the same model
type, parameters, and connectivity patterns. Therefore, inhibitory and excitatory
neurons are often in separate implementation layers but can represent neurons of
the same layer within an anatomical cortex column.

2.4 Synaptic Transmission

Signal transmission between neurons is mediated by electrical and chemical synapses.
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Figure 2.4: Exponential decay and difference of exponentials. The red dashed
line shows an example of an exponential decay with τ = 100 ms (brown
dashed dotted line: τ = 5.5 ms). Such functions can be used to model pro-
cesses that fall back to a base line after a deviation; e.g. the amount of trans-
mitter molecules in the synaptic cleft. If the process has a rising phase that
can not be neglected, a difference of two exponentials can be used. Blue line:
difference of exponentials with τf all = 100 ms and τrise = 5.5 ms used to model
NMDA transmitter concentration in Michler, Eckhorn, and Wachtler (2009). K
is a constant factor depending on τf all and τraise to scale the function so that
the peak has a value of 1.0.

Electrical Synapses

Electrical synapses are fast because currents flow directly between two cells via gap
junctions. They can play a role for synchronization, regulation of neural circuits, and
retinal feature selectivity (e.g. Nath and Schwartz, 2017). Since they were not used
in the studies presented in this dissertation, I will not further discuss them here.

Chemical Synapses

Once an action potential arrives at a chemical synapse, transmitter molecules are
released into the synaptic cleft, and ion channels in the postsynaptic membrane are
opened, increasing conductance of respective ion currents. Depending on the type
of transmitter, this causes an inhibitory or excitatory postsynaptic current (IPSC or
EPSC). The amount of active transmitter molecules in the synaptic cleft then de-
creases. Either they are chemically inactivated (like acetylcholine, which is split
into acetate and choline), or they are reabsorbed into the presynaptic membrane
by special transporter proteins (like glutamate, GABA, and serotonine; this process
is called reuptake).

The temporal evolution of the amount of transmitter can be modeled using an
exponential decay function. To also consider a raising phase (e.g. the slow activation
of NMDA receptors), a difference of exponentials can be used (Figure 2.4).

The simplest way to model postsynaptic currents is to assume they are propor-
tional to the amount of transmitter molecules, and implement it as a current injec-
tion (Iinput in equation 2.8) that is directly added to the membrane potential (like
in chapter 3.2 for excitatory synapses). This is a sufficient approximation for excita-
tory currents, since outside of action potentials the variation of membrane potentials
(−70 mV to −55 mV) is small compared to the difference V − Erev between average
membrane potential and reversal potential for excitatory currents (Erev ≈ 0 mV for
glutamate receptors).
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Figure 2.5: Current injection vs conductance based synaptic input. Mem-
brane potential of an Izhikevich model neuron for a series of rectangular
synaptic inputs. For current injection (blue dashed lines) rectangular pulses
are directly used as Iinput. For conductance based input (solid red lines) the
difference of reverse potential and membrane potential is considered: Iinput =
g(V − Erev). (a) For subthreshold excitatory inputs the difference between cur-
rent injection (blue dashed line) and conductance based input (red solid line;
EAMPA = 0 mV) is very small. (b) For inhibitory inputs, current injection (blue
dashed line) lowers the membrane potential with every step, while for conduc-
tance based inhibitory input (red solid line; EGABA = −70 mV) the membrane
potential converges towards a lower boundary.

Inhibitory Cl− currents have a reversal potential Erev ≈ −70 mV, which is close
to the resting membrane potential. Even for very large inhibitory input, the mem-
brane potential would never fall below Erev. Simply adding negative currents would
therefore result in unrealistically low membrane potentials (blue dashed line in Fig-
ure 2.5b). Conductance based models consider this by calculating the synaptic cur-
rent from the conductance gi and the difference between membrane potential and
the reverse potential V − Erev. Figure 2.5 demonstrates the difference of current in-
jection and conductance based synaptic input for a series of increasing excitatory
(Figure 2.5a) and inhibitory (Figure 2.5b) rectangular synaptic inputs.

2.5 Cellular Mechanisms of Neural Plasticity

While the precise mechanisms underlying synaptic plasticity are not yet fully un-
derstood, experimental results suggest that for at least one mechanism intracellular
Ca2+ levels play a crucial role (Shouval, Bear, and Cooper, 2002; Dan and Poo, 2004).
Spike timing dependent plasticity (STDP) was found to depend on NMDA receptors
(NMDARs) and backpropagating action potentials (Markram et al., 1997; Bi and Poo,
1998).

NMDARs are voltage gated glutamate channels that are permeable for Na+, K+,
and Ca2+. For membrane potentials near the resting potential (-70 mV) NMDARs
stay closed, even if they bind glutamate. This is caused by a Mg2+ ion that is part
of the receptor and blocks the channel. Once the membrane potential shifts towards
less negative values, the position of the Mg2+ ion within the NMDAR changes and
the channel opens. Because NMDAR activation depends on two factors – transmitter
binding and depolarized membrane potential – they can act as coincidence detectors.

When a cell fires an action potential (AP), this AP not only travels along the axon
but also propagates back into the cell’s own dendrites. There it can interact with
NMDARs. Therefore, when the postsynaptic cell fires shortly after the presynap-
tic cell (pre → post), a backpropagating AP can open NMDARs that have already
bound glutamate due to a preceding presynaptic AP. This causes a fast and large
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Figure 2.6: Implementation of a Hebbian learning rule. Time course of learn-
ing potentials Lpre, Lpost, and weight change ∆w for a series of spikes, accord-
ing to the learning rule used in Michler, Eckhorn, and Wachtler (2009). When
a presynaptic spike immediately precedes a postsynaptic spike, both learning
potentials Lpre and Lpost are high, and the synaptic weight is increased by ∆w
(at 50 ms). For a reversed order of presynaptic and postsynaptic spikes (around
25 ms), Lpre is still zero at the time ∆w is calculated, and therefore the synaptic
weight does not change.

increase of Ca2+ concentration in the dendrite, which can be used as an intracellular
signal to trigger LTP. For the reverse spiking order (post→ pre) the backpropagating
AP does not coincide with glutamate binding of NMDAR. Raise of Ca2+ is therefore
small during EPSP, which can be used as a signal to weaken the synapse (LTD).

The time differences between post- and presynaptic spike where significant LTP
occurs (critical window) are in a range of 0 - 10 ms (for rat hippocampal slices) and
0 - 40 ms (Xenopus tadpole; review by Dan and Poo, 2006). For LTD the smallest
critical windows were 0 to -7 ms (Zebra finch), whereas the largest were 0 to -200 ms
(rat hippocampal slice culture).

2.6 Synaptic Learning Rules

The Hebbian learning rule for excitatory synapses used in Michler, Eckhorn, and
Wachtler (2009) and Michler, Wachtler, and Eckhorn (2006) is based on learning po-
tentials Lpre and Lpost that represent intracellular signals associated with action poten-
tials (e.g. Ca2+concentration and glutamate binding with NMDAR). These variables
increase for every presynaptic or postsynaptic spike and then decrease exponen-
tially.

ẇn,m = δm(tm)RLpre,nLpost,m (2.10)

Lpre,n = ∑
tn

e−
t−tn
τpre (2.11)

Lpost,m = ∑
tm

e
− t−tm

τpost (2.12)
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Synaptic weights are updated with every postsynaptic spike. Mathematically this is
expressed by multiplying with a Dirac function δm(tm) that is 1 at time tm of a post-
synaptic spike, and 0 otherwise. R is a constant to adjust the learning rate. Figure 2.6
shows an example for a series of pre- and postsynaptic spikes.

2.7 Competition: The Winner Takes it All

Competition Between Neurons

Neurons can compete with each other for activation via lateral inhibition (Figure 1.1).
The neuron that receives the strongest input suppresses activity of its competitors
by activating inhibitory interneurons. Because synaptic plasticity depends on spike
frequency, the most active neurons adjust their weights to match the current input
pattern. By reducing the number of spikes of competing neurons, the "winner" pre-
vents other neurons from learning the same pattern. The connection between lateral
inhibition and learning was already proposed by Grossberg (1969). In the context of
computational models of neural networks this principle is known as winner-take-all
(WTA).

Competition Between Synapses

Hebbian plasticity increases synaptic weights based on correlation between pre-
and postsynaptic activity. This creates a positive feedback loop, because increased
weights in turn increase correlations. If synaptic weights were allowed to grow un-
constrained, the neural network could run into a dysfunctional state with too much
activity where no useful information processing takes place anymore (e.g. like an
epileptic seizure). To solve this stability problem, synaptic normalization rules can
be used that keep the total sum of synaptic strength converging onto one cell con-
stant (von der Malsburg, 1973): as one synapse grows stronger, others are weakened,
creating competition between synapses targeting the same neuron.

The underlying cellular processes could be competition for limited resources like
dendrite building material and receptor molecules, or a form of spike timing depen-
dent synaptic depression that balances the total amount of synaptic input. Further, a
variety of homeostatic plasticity phenomena have been found (Turrigiano and Nel-
son, 2004). Modeling results by Zenke, Hennequin, and Gerstner (2013) suggest the
existence of a homeostatic regulatory mechanism that reacts to firing rate changes
on the order of seconds to minutes.
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Chapter 3

Publications

3.1 Using Spatiotemporal Correlations to Learn Topographic
Maps for Invariant Object Recognition

Summary

In the following publication “Using Spatiotemporal Correlations to Learn Topo-
graphic Maps for Invariant Object Recognition” (Michler, Eckhorn, and Wachtler,
2009) we address the problem of invariant object recognition in spiking neural net-
works. We propose a new mechanism that combines two established principles of
neural computation in a novel way to enable unsupervised learning of viewpoint in-
variant representations of visual objects: learning based on temporal contiguity and
the formation of self-organizing topographic maps (SOMs). Our main hypotheses
are:

1. Temporal correlations in input sequences can shape the neighborhood rela-
tions in a topographic map.

2. A feature topography that reflects spatial and temporal correlations can sup-
port viewpoint invariant coding of object identity.

3. Intrinsically sustained spiking activity can provide a memory trace suitable
to bind successively observed views of objects to representation that enables
invariant recognition.

We used stimuli that allowed us to separate the effects of spatial and temporal
correlations. By changing the order of stimuli during learning we show that the
differences of learned topographic maps indeed reflect temporal correlations.

Our results show that in spiking neural networks learning based on temporal
contiguity is possible without the need of a new mechanism of spike timing depen-
dent synaptic plasticity (STDP) that operates on a longer time scale. Instead, lateral
connections between excitatory neurons can sustain the spiking activity of a local
group of neurons, thereby providing a memory trace with a functional role similar
to a synaptic trace rule. Our model suggests that the topographic order of feature
representations observed in various parts of the visual cortex has a functional role
for invariant object recognition.
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Michler F, Eckhorn R, Wachtler T. Using spatiotemporal correla-
tions to learn topographic maps for invariant object recognition. J
Neurophysiol 102: 953–964, 2009. First published June 3, 2009;
doi:10.1152/jn.90651.2008. The retinal image of visual objects can
vary drastically with changes of viewing angle. Nevertheless, our
visual system is capable of recognizing objects fairly invariant of
viewing angle. Under natural viewing conditions, different views of
the same object tend to occur in temporal proximity, thereby gener-
ating temporal correlations in the sequence of retinal images. Such
spatial and temporal stimulus correlations can be exploited for learn-
ing invariant representations. We propose a biologically plausible
mechanism that implements this learning strategy using the principle
of self-organizing maps. We developed a network of spiking neurons
that uses spatiotemporal correlations in the inputs to map different
views of objects onto a topographic representation. After learning,
different views of the same object are represented in a connected
neighborhood of neurons. Model neurons of a higher processing area
that receive unspecific input from a local neighborhood in the map
show view-invariant selectivities for visual objects. The findings
suggest a functional relevance of cortical topographic maps.

I N T R O D U C T I O N

Invariant object recognition

Our visual system has the capability of invariant object
recognition: we recognize a familiar object under different
viewing conditions, despite drastic variations in the corre-
sponding retinal images with viewing angle, distance, or illu-
mination. Physiological studies have shown that cells in mon-
key V4 and inferotemporal cortex (Ito et al. 1995; Tanaka
1996, 2003; Tovee et al. 1994; Wang et al. 1996) and in the
human hippocampus (Quian Quiroga et al. 2005) show selec-
tivity for objects invariant of size or viewing angle.

A prototype for models of invariant representations is the
pooling model (Hubel and Wiesel 1962; Kupper and Eckhorn
2002; Riesenhuber and Poggio 1999). An output cell receives
input from a pool of cells that have the same selectivity in one
feature dimension, but a different selectivity in a second
feature dimension. The output cell will then respond selec-
tively to the first feature, but will show invariant responses
with respect to the second feature.

Spatial and temporal stimulus correlations as cues
for learning invariant representations

When we move through our environment while fixating an
object, or when we manipulate an object, different views of the

same object appear in temporal sequence. The retinal projec-
tions change continuously, whereas the identity of the object
remains the same. Under such natural viewing conditions,
projections of different views of the same object are spatially
and temporally correlated. Physiological (Miyashita 1993;
Stryker 1991) and psychophysical (Wallis and Bülthoff 2001)
studies have shown that these correlations influence the learn-
ing of object representations.

Several mechanisms have been proposed for how these
correlations could be used for learning invariant representa-
tions (Becker 1993; Einhäuser et al. 2002; Földiák 1991;
Stringer et al. 2006; Wallis 1996; Wiskott and Sejnowski
2002). Földiák (1991) proposed a modified Hebbian learning
rule—the trace rule—that exploits temporal correlations in a
sequence of input patterns. The trace learning rule has been
used in a hierarchical multilayer network, to achieve invariant
response properties for more realistic stimuli (Rolls and
Stringer 2006; Stringer and Rolls 2002; Wallis and Rolls
1997).

How the trace rule is implemented in cortical circuits is still
an open question. Wallis and Rolls (1997) argued that persis-
tent firing, the binding period of glutamate in the N-methyl-D-
aspartate (NMDA) channels, or postsynaptically released
chemicals such as nitric oxide might be the biological basis for
the trace rule. Sprekeler et al. (2007) showed theoretically that
the learning rule for slow feature analysis (SFA), which is
related to trace learning, can be achieved with spiking neurons.
Nevertheless, invariance learning on the basis of temporal
correlations has not yet been implemented in a network of
spiking neurons.

Previous models for invariance learning (Einhäuser et al.
2002; Riesenhuber and Poggio 1999; Wallis and Rolls 1997)
relied on not only the learning of features but also learning the
specific connections to pool across related features to achieve
invariant representations. We will show that feature represen-
tations can be learned in an ordered way, such that related
features are represented in a local neighborhood and invariance
can be achieved by a generic connectivity without the need for
further learning. The key mechanism for this is to learn a
topographic map that reflects the spatiotemporal correlations of
the inputs.

Topographic maps and spatiotemporal stimulus correlations

Many cortical areas are topographically organized. In pri-
mary visual cortex (V1), neighboring neurons receive input
from neighboring parts of the retinal image. Superimposed on
the retinotopic organization is an orientation topography:
neighboring populations of neurons respond to edges of similar
orientation (Hubel and Wiesel 1974). In inferotemporal cortex,
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topography for more complex features or even for character-
istics of object views was found (Wang et al. 1996). This
suggests that some higher-order features of the input are
mapped continuously in a topographic fashion (for review see
Tanaka 1996, 2003).

The model for the self-organization of cortical maps pro-
posed by von der Malsburg (1973) relies on Hebbian learning
in forward connections, short-range lateral excitation, and
long-range lateral inhibition. A biologically realistic imple-
mentation of this learning principle is the RF-SLISSOM (re-
ceptive field–spiking laterally interconnected synergetically
self-organizing map; Choe and Miikkulainen 1998) model,
which uses spiking model neurons. Trained with a stimulus set
of oriented bars, these models can learn orientation maps
similar to those found in primary visual cortex. In these studies,
stimuli were presented in pseudorandom order to exclude the
effects of temporal correlations. As our results show, temporal
correlations can affect the emerging topography in this model
architecture, if the lateral connections have a large time con-
stant.

An attempt to extend the von der Malsburg model to account
for temporal correlations has been considered by Wiemer and
colleagues (Wiemer 2003; Wiemer et al. 2000). It is based on
lateral propagation of activity, but has not been implemented in
a biologically realistic network.

Goals and hypotheses

In this study we investigate a learning principle that com-
bines the idea of spatial and temporal correlation-based invari-
ance learning with self-organizing map formation. Hebbian
learning suggests that the emerging topography of a self-
organizing network with slow lateral connections is influenced
not only by spatial but also by temporal correlations (Saam and
Eckhorn 2000). In this study our main hypothesis is that
temporal correlations in input sequences can shape the neigh-
borhood relations in a learned topographic map. Furthermore,
we hypothesize that a feature topography that reflects spatial
and temporal correlations can support the view-invariant cod-
ing of object identity. We investigated these hypotheses with
simulations of a biologically plausible network of spiking
neurons. The slowness principle for learning invariant repre-
sentations can be implemented in a biologically realistic spik-

ing neural network by using NMDA-mediated short-range
lateral connections and long-range lateral inhibition. This con-
nectivity can cause a network dynamics with persistent activity
that implements a memory trace. By manipulating the temporal
correlations of the input we systematically investigated the
effects of stimulus similarity and temporal proximity. View
invariance is achieved by neurons of a downstream area that
receive input from the topographic map via fixed, generic
connections.

M E T H O D S

Network architecture

The network consists of a forward pathway of three layers of
spiking neurons. Layer E0 is the input layer, layer E1 represents the
map formation layer, and the output layer E2 represents a cortical
stage downstream of layer E1 (Fig. 1). Neurons in layers E0 (30 � 30
or 8 � 24 � 26 neurons, depending on the stimulus set), E1 (100 �
100), and E2 (10 � 10) are arranged in two-dimensional (2D)
arrays. E0 neurons are activated by the stimulus patterns (see
following text). E0 has �-amino-3-hydroxy-5-methyl-4-isox-
azolepropionic acid (AMPA)–mediated excitatory forward projec-
tions (WE1,E0) to the excitatory neurons of layer E1. These con-
nections exhibit Hebbian plasticity. The connectivity from E0 to
E1 is initially all-to-all with equal weights.

In addition to input from E0, E1 neurons receive excitatory input
from their neighbors (WE1,E1) with fixed connection strengths that
decrease with the distance between two neurons according to a
Gaussian

w�E1, E1�i,j � � SE1,E1 exp�� 1

2
� di,j

�E1,E1
�2� i � j

0 i � j (1)

where w(E1, E1)i,j is the synaptic strength (weight) of the connection
from neuron j to neuron i, SE1,E1 is the maximum connection strength,
di,j is the Euclidean distance between neurons j and i, and �E1,E1 is the
width of the Gaussian kernel. We used toroidal boundary conditions
to avoid boundary effects. E1 neurons mutually inhibit each other via
a pool of inhibitory interneurons I1. The connectivity between E1 and
I1 is random; thus the pool of inhibitory neurons (I1) has no topo-
graphic order. Lateral excitatory connections from E1 to E1 and from
E1 to I1 are mediated via fast AMPA (�decay � 2.4 ms) and slow
NMDA (�decay � 100 ms) currents. Inhibitory connections from I1 to
I1 and I1 to E1 are mediated by a �-aminobutyric acid type A

FIG. 1. Model architecture. The model
consists of 3 layers of excitatory neurons
(E0, E1, E2). Hebbian forward connections
from E0 to E1 are all-to-all (WE1,E0). Lateral
excitatory connections (WE1,E1) between E1
neurons are restricted within a lateral inter-
action range. Each E1 neuron has connec-
tions (WI1,E1) to a random subset of the
inhibitory interneurons I1. I1 neurons have
inhibitory connections (WE1,I1) to a random
subset of I1 and E1. Each E2 neuron receives
input from a local subregion of E1 (WE2,E1).
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(GABAA) current (fast, �decay � 7.0 ms). E1 neurons project to output
layer E2 with a Gaussian weight profile

w�E2, E1�i,j � SE2,E1 exp�� 1

2
� di,j

�E2,E1
�2� (2)

These connections were fixed and did not change during the simulation.
Thus a neuron in layer E2 receives input from a fixed, localized region of
layer E1. The connectivity patterns are summarized in Table 1.

Model neurons

Spiking neurons were simulated by a standard leaky integrate-and-
fire model with a voltage threshold and biologically realistic synaptic
potentials (Brunel and Wang 2001; Deco and Rolls 2005)

Cm

dV�t�

dt
� �gL�V�t� � EL� � Isyn�t� (3)

where Cm is the membrane capacitance and gL is the leak conductance
of the membrane. When the membrane potential exceeds the firing
threshold �, an action potential (spike) is generated. The downstroke
of the spike is modeled by resetting the membrane potential to Vreset.
After each spike an absolute refractory period of 1 ms duration is
introduced. Parameter values are given in Table 2.

Excitatory forward connections are mediated by AMPA currents,
lateral excitatory connections are mediated by AMPA and NMDA
currents, and inhibition is mediated by fast GABAA currents. Isyn(t) is
the sum of the AMPA, NMDA, and GABAA synaptic currents

Isyn�t� � IAMPA�t� � INMDA�t� � IGABAA
�t� (4)

IAMPA�t� � GAMPA�t�ĜAMPA�V�t� � EAMPA� (5)

IGABAA
�t� � GGABAA

�t�ĜGABAA
�V�t� � EGABAA

� (6)

INMDA�t� �
GNMDA�t�ĜNMDA�V�t� � ENMDA�

1 � �Mg2�� exp�	0.062V�t��/3.57
(7)

where EAMPA � 0 mV, ENMDA � 0 mV, and EGABAA
� 	70 mV are

the reverse potentials for the synaptic currents. The nonlinear voltage
dependence of the NMDA current (caused by the Mg2�-block, Eq. 7)
was modeled according to Jahr and Stevens (1990).

ĜAMPA, ĜGABAA
, and ĜNMDA are the maximum synaptic conductiv-

ities when all channels are open. GAMPA(t), GGABAA
(t), and GNMDA(t)

are the respective fractions of open channels. When a presynaptic
spike occurs at t � tsp, the fraction of open channels G(t) increases and
then decreases. This process is modeled with a difference of two
exponentials (Eq. 8)

G�t� � Grise�t� � Gdecay�t� (8)

d

dt
Grise�t� � �

Grise�t�

�rise

� wm,nem,n�t�	�t � tsp� (9)

d

dt
Gdecay�t� � �

Gdecay�t�

�decay

� wm,nem,n�t�	�t � tsp� (10)

where wm,n is the synaptic weight and em,n is the synaptic efficacy.
The forward connections from E0 to E1 are not depressive [em,n(t) �
const � 1] and evoke only an AMPA current. The recurrent connec-
tions between E1 neurons evoke both AMPA and NMDA currents.
The ratio between the peak amplitude of NMDA and AMPA currents
was set to 0.3 (Crair and Malenka 1995). These recurrent connections
show synaptic depression to stabilize the network activity. For the
synaptic dynamics we used a simplified version of the model proposed
by Tsodyks et al. (1998)

em,n�t�

dt
�

1 � em,n�t�

�rec

� Useem,n�tsp�	�t � tsp� (11)

where Use is the fraction of available transmitter that is released
during a postsynaptic spike and �rec is the recovery time constant for
the transmitter pool.

Learning rule

We used a Hebbian learning rule similar to that proposed by
Gerstner et al. (1996), Saam and Eckhorn (2000), and Michler et al.
(2006). The synaptic weights wm,n of the forward connections from
layer E0 to E1 are adapted according to the following equations

d

dt
wm,n � 	m�t�RLpre,nLpost,m (12)

Lpre,n � �
tsn

exp�� t � tsn

�pre
� (13)

Lpost,m � �
tsm

exp�� t � tsm

�post
� (14)

where 	m(t) is 1 when a spike occurs in the postsynaptic neuron m;
otherwise, 	m(t) is zero. tsn and tsm denote the times of the past pre-
and postsynaptic spikes. When a spike occurs, the pre- or postsynaptic
learning potentials Lpre,n or Lpost,m are increased by 1. They exponen-
tially decrease with time constants �pre � 20 ms and �post � 10 ms.
The exact values of these parameters are not critical. R corresponds to
the learning rate. Because learning occurs only after postsynaptic
spikes [	m(t) � 1], this learning rule is temporally asymmetric; it
prefers presynaptic before postsynaptic spiking. The learning rule
increases weights if pre- and postsynaptic neurons have overlapping
spike trains on a short timescale on the order of �pre and �post.

Each time the firing rate of a postsynaptic neuron exceeds a
threshold (
norm � 50 Hz), all input weights are multiplied by
normalization factor fnorm 
1. Evidence for normalization of synaptic
weights exists (e.g., Royer and Paré 2003), but the mechanisms are
not yet understood. Weight normalization prevents infinite growth of
weights and introduces competition between the inputs of a neuron.

TABLE 1. Connection properties

Connection Connectivity Schema Postsynaptic Currents

E03 E1 All-to-all, modifiable AMPA (fast)
E13 E1 Gaussian kernel with range �E1E1 AMPA (fast) � NMDA (slow)
E13 I1 Random, connectivity � cI1E1 AMPA (fast) � NMDA (slow)
I1 3 E1 Random, connectivity � cE1I1 GABAA (fast)
I1 3 I1 Random, connectivity � cI1I1 GABAA (fast)
E13 E2 Gaussian kernel with range �E2E1 AMPA (fast)

Connectivity and postsynaptic currents are shown for all synaptic connec-
tions between neuron layers. Connections between E0 and E1 are modifiable
(see text), whereas all other connections are fixed.

TABLE 2. Model neuron parameters

Parameter Excitatory Neurons Inhibitory Neurons

Cm 0.5 nF 0.2 nF
gL 25 nS 20 nS
� 	50 mV 	50 mV
Vreset 	55 mV 	55 mV

Parameters for inhibitory and excitatory neurons were taken from Deco and
Rolls (2005).
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Stimuli

The network was trained with sets of parameterized stimuli that
differed along two parameter dimensions, denoted X and Y, respec-
tively. We tested three increasingly complex stimulus sets, with
different correlation structures.

GAUSSIAN STIMULI. Gaussian stimuli consisted of 2D Gaussian
activity profiles varying in the horizontal and vertical positions of the
center of the Gaussian. These coordinates were used as X and Y
dimensions of the stimulus space. The correlation structure of this
stimulus set is symmetrical in X and Y. Because of this symmetry we
can isolate the effects of the temporal correlations by using stimulus
sequences with temporal correlations along either the X or the Y
direction of the stimulus space.

PRISM STIMULI. We generated a set of stimuli with variation corre-
sponding to viewing angle (X parameter) and object identity (Y
parameter) of three-dimensional (3D) objects. Objects were triangular
prisms (Fig. 2A).

We varied an arbitrary set of parameters of the prism: the height,
the size of the top and bottom triangles, the rotation angle between the
top and the bottom triangles, and 3D orientation of the top and bottom
triangles. Each of these parameters was systematically changed in
steps according to a periodic triangular function tri (Y � �) (Fig. 2B),
which maps the parameter values to the Y dimension of the 2D
stimulus parameter space. Therefore the shape changed only along a
one-dimensional manifold. Shifting the phase of the triangular func-
tion � for different parameters, we obtained toroidal boundary con-
ditions for the stimulus deformation parameter Y. An irregular texture
was applied to the surfaces of the prisms to make the faces of the
prism more distinct (Fig. 2C). Using the open source 3D library
Crystal Space (Tyberghein et al. 2007) we generated views of these
objects, rotated around their vertical axis with a step size of 18°,
resulting in a set of 20 � 20 stimulus pictures, each with 200 � 200
pixels (Fig. 2D). Stimuli were preprocessed by a set of 30 � 30 Gabor
filters of 19-pixel wavelength and 6-pixel width of Gaussian, com-
prising eight orientations. To reduce the number of input neurons
required, the resolution of the input array was reduced to 30 � 30 by
resampling and cropped to 26 � 24 pixels. The outputs of these
orientation filters were then used as input signals for the E0 neurons.

COIL STIMULI. To test the performance of the network for more
natural stimuli we used images of natural objects taken under different
viewing angles. Images were taken from the Columbia Object Image
Library (COIL-100) database (Nene et al. 1996). We created a
stimulus set with 10 objects and 36 views of each object. The X
dimensions corresponded to the viewing angle and the Y dimension to
object identity. With respect to the prism stimulus set, the pictures
were preprocessed by 30 � 30 Gabor filters (eight orientations;
10-pixel wavelength; 2.1-pixel width of Gaussian), resampled to 30 �
30 pixels, and cropped to 26 � 24 pixels. In contrast to the Gaussian
and prism stimuli, in this stimulus set there was no continuous
transformation along the Y dimension (object identity) of the stimulus
space.

Training and test procedures

We used three training conditions with different temporal correlations
between the elements of the stimulus set. In the X slow condition the X
parameter was held temporally constant for intervals of tconst � [400 ms,
600 ms], whereas the Y parameter was changed continuously. After
each of these training intervals, a short interstimulus interval (20 ms)
occurred and X and Y parameters switched to random values for the
next training interval (see Supplemental Fig. S1).1 In the Y slow
condition temporal correlations were conversed: the Y parameter was
held constant for durations of tconst, whereas the X parameter changed
continuously. Thus temporal correlations were restricted to the fast
changing dimension of the stimulus set.

As a control we simulated a random training condition with random
order of stimuli in the sequence, i.e., without temporal correlations.

Network simulations were performed with 125-s training epochs in
alternation with test epochs. Both training and testing were done with
the full stimulus sets. With 20 training epochs for the Gaussian and
prism stimuli and 10 training epochs for the COIL stimuli, total
simulated training times were 2,500 and 1,250 s, respectively. During
the training epochs the forward connections from layer E0 to E1 were
adapted according to the Hebbian learning rule.

During test epochs we tested the network properties with the
complete stimulus set. Hebbian plasticity was turned off. Each stim-

1 The online version of this article contains supplemental data.

FIG. 2. Three-dimensional (3D) stimu-
lus set. A: triangular prism. B: periodic
triangular function used to continuously
change the 3D object parameters along the
Y-axis of the stimulus space. C: surface
texture of the prism. D: a 3D-object stim-
ulus set was generated by deforming and
rotating the prism (see text).
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ulus was presented for 250 ms. In contrast to learning epochs, in test
epochs after each stimulus presentation, all dynamic network vari-
ables such as the membrane potentials and synaptic depression pa-
rameters were reset to avoid persistent activity evoked by the previous
stimulus.

To evaluate how well the stimulus patterns were encoded in the
activity of E2 neurons, we determined mean estimation errors for the
X and Y parameters. The estimation error measures how reliably
information about the currently present stimulus can be read out from
the network activity. Because we tested the current network activity
with the representation after the penultimate learning epoch, the
estimation error is also a measure of stability of the representation.
The following equations explain the X estimation error ex. For the Y
estimation error ey X and Y in the following equations are exchanged.

The X estimation error ex is the difference between the actual X
value of the test stimulus Xn of the last (nth) test epoch and the X
value Xp estimated by the network activity based on the tuning curves
drawn from the penultimate test epoch. Nx � 20 is the size of the X
dimension of the stimulus space. The stimulus space is circular (e.g.,
distance between stimuli 0 and 19 is 1). The difference between two
stimuli in this stimulus space is the shortest distance along a circular
path

ex � min ���Xp � Xn�, �Xp � Nx � Xn�, �Xp � Nx � Xn��� (15)

The estimated X value Xp is calculated by taking into account the
activity of all E2 neurons (an[j], j � {1, . . . , JE2}), elicited by the
current stimulus, and the corresponding tuning curves T[X, j] of the E2
neurons. For a given value X the neural activity of a single neuron j
multiplied by the corresponding value of the tuning curve (T[X, j]) is
a measure for how strong this neuron estimates value X. The sum of
this measure over all neurons is the population prediction P[X]

P�X� � �
i�1

JE2

�T�X, j�an� j�� (16)

The estimated value Xp is the one with the highest likelihood

Xp � arg max �P�X�� (17)

The tuning curve T[X, j] is calculated using the E2 responses of the
penultimate test epoch (n 	 1)

T�X, j� �
1

Ny
�
Y�0

Ny	1

an	1�X, Y, j� (18)

The original preference indices are in the range from 0 to 19. Because
of the toroidal boundary conditions values 0 and 19 are direct
neighbors in stimulus space. Therefore the maximal difference is 10.
Note that for a uniform distribution, estimation error values of 0 and
10 would have a probability of 5%, whereas because of the rectifica-
tion (Eq. 15), the values 1 to 9 would have a probability of 10%.

For a representation that is invariant with respect to the X parameter
and selective for the Y parameter, the mean estimation error for the Y
parameter ey would be low and the mean estimation error for the X
parameter ex would be high. If the E2 neurons contained no informa-
tion about the X parameter of the stimulus, the X estimation error
would be uniformly distributed.

R E S U L T S

Formation of topographic maps

After training with the Gaussian stimulus set, all layer E1
neurons responded selectively to a small subset of the stimuli.
Figure 3A shows the response matrix for a typical layer E1
neuron after training with the Gaussian stimulus set. The
neuron encodes a continuous subregion of the stimulus space.

To quantify the selectivity, we calculated the mean response
for each combination of X and Y stimulus parameter values.
To visualize the spatial distribution of the stimulus selectivi-
ties, we represented the preferred X and Y parameters of each
layer E1 neuron by the hue and the maximal response strength
by the brightness of HSV (Hue, Saturation, Value) color space.
Figure 4, A and B shows the topographic maps that were
learned with the Gaussian stimuli, using the X dimension as the
slow parameter and the Y dimension as the fast changing
parameter. Both maps show patches of neighboring neurons
with the same or similar selectivities. However, the patches are
larger for the X parameter (Fig. 4A) than those for the Y
parameter (Fig. 4B). Moreover, neurons with a preference for
the same X parameter are clustered within a single local region
of the map. In contrast, patches of neurons with a preference
for a certain Y parameter value are distributed across the map.

These properties of the maps are exchanged when the
temporal correlations of X and Y parameters are exchanged:
Fig. 4, E and F shows the maps that were learned with the Y
dimension as the slowly changing parameter. Here the patches
of similar Y preference are larger and localized (Fig. 4F),
whereas the representation of the X parameter (Fig. 4E) shows
smaller patches and is more distributed across the map, show-
ing a pattern similar to the pinwheel topography of V1 orien-
tation selectivity (Bonhoeffer and Grinvald 1991). We see that
in both cases similar values for the slow parameter (Fig. 4, A
and F) are represented in a localized part of the map, whereas
the fast changing parameter has a distributed representation
(Fig. 4, B and E). In many cases the whole range of preferences
for the fast changing parameter can be found within a patch of
similar preference for the slow parameter.

FIG. 3. Learned stimulus selectivities.
Stimulus response matrix and X and Y tun-
ing curves for an example layer E1 neuron
(A) and a layer E2 neuron (B). The maxima
of the X and Y tuning curves are defined as
preferred X and Y indices. The response
matrices show the response strength for each
of the 400 stimuli. The X and Y tuning
curves are a measure for the selectivity to
the 2 dimensions of the stimulus set. Here, Y
was the slowly changing parameter. A: the
E1 neuron encodes a subregion of the stim-
ulus space. B: response of the E2 neuron
showed high selectivity for the Y parameter
and low selectivity for the X parameter.
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In the condition of random presentation (Fig. 4, C and D),
there were no qualitative differences between the maps for the
preferred X and Y parameters.

The topographic maps obtained with the prism and COIL
stimuli (not shown) looked similar to those of the Gaussian set.
To quantitatively compare the patch structure of the different
maps, we calculated the Fourier spectra of the topographic
maps and used the peak spatial frequency as an estimate of the
patch sizes (Table 3). For all simulations with the Gaussian or
prism stimuli and X as the slow parameter, the peak spatial
frequency for the X parameter was much lower than that for the
Y parameter. Conversely, when Y was the slow parameter the
peak spatial frequency was lower in the Y map. We can
conclude that the topographic maps for the slow parameter
show larger patches compared with the maps for the fast

changing parameter. This indicates that the temporal correla-
tions are reflected in the learned topography. For the COIL
stimuli, in the X slow condition the difference in patch sizes is
very small. This is caused by the strong asymmetry in spatial
correlations between X and Y dimensions of the stimulus
space: strong correlations in the X direction (same object,
different viewing angle), low correlations in the Y direction
(same viewing angle, different object).

To illustrate the topographic order, we determined the re-
gions in the map activated by the same object for different
viewing angles (Fig. 5). A patch of high neural activity is
continuously shifted as the viewing angle of the object
changes, similar to activity in inferotemporal cortex evoked by
different views of a face (Wang et al. 1996). Different views of
the same object are mapped in the same region and have
overlapping representations.

Stability of learned preference maps

To investigate the convergence of the learned representa-
tions we performed an analysis of the temporal development of
the learned preference maps in a simulation with 20 training
epochs of 250 s and with Y as the slow parameter. For each
neuron, we calculated the differences between X and Y pref-
erence values in each epoch to the respective preference values
after the following training epoch. The fraction of neurons with
a difference 
1 decreased from 62% to 11% for the X
preference and from 31% to 4.5% for the Y preference. Both

FIG. 4. Learned topographic maps. Pre-
ferred X (A, C, E) and Y (B, D, F) stimulus
index of layer E1 neurons after learning with
Gaussian stimuli. Color indicates preferred
parameter values and response strength, as
shown by inset below panels. The color of
each pixel corresponds to the preference
value [0–19] of a single layer E1 neuron.
Maps are shown for 3 different learning
conditions (see Training and test proce-
dures). A and B: X slow. C and D: random.
E and F: Y slow. The maps for the fast
changing parameter (B and E) have smaller
patches and preferences for the same index
are distributed across the map. The maps for
the slowly changing parameter (A and F)
show larger patches of neurons with similar
preference and preferences for similar values
are clustered.

TABLE 3. Spatial frequencies of topographic maps (Fig. 4),
normalized to the dimensions of layer E1 (100 � 100)

X Slow Y Slow

Stimulus Set X s.f. Y s.f. X s.f. Y s.f.

Gaussian 0.98 2.16 2.11 0.98
Prism 1.00 2.11 1.62 1.10
COIL 1.76 1.87 1.95 0.98

In all cases the dominant spatial frequency (s.f.) is lower for the slow and
higher for the fast and continuously changing parameter. For the COIL
stimulus in the X slow condition the differences are very small because of the
biased correlation structure of this stimulus set (see text).
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maps converged after about 2,500 s of learning time (Supple-
mental Figs. S2 and S3).

Invariant representations

Patches representing the slowly changing parameter were
larger than the patches for the fast changing parameter (Fig. 4).
Specifically, the localized region corresponding to the patch
representing a given value of the slowly changing parameter
contained patches of all values of the fast changing parameter.
As a consequence of this topography, neurons in E2, each
receiving input from a local region of the map layer, showed
selectivity for the slow parameter and invariance to the fast
changing parameter. Figure 3B shows the response matrix and
the X and Y tuning curves for an example layer E2 neuron for
the Gaussian stimuli. Compared with the response matrix of a
layer E1 neuron (Fig. 3A) there is a clear asymmetry. The Y
tuning curve shows much larger variance than the X tuning
curve. Thus the response of this neuron is more selective for
the Y parameter and more invariant for the X parameter.

From the minima and maxima of the X and Y tuning curves
we calculated a selectivity index: s � (max 	 min)/(max �
min), in which s measures the relative difference in responses
to different stimulus patterns and is zero for a flat tuning curve.
The X and Y selectivity index values for the layer E2 neurons
are plotted against each other in the diagrams in Fig. 6. Figure
6A shows results for the Gaussian stimuli. In the simulation
with X as the slow parameter, X selectivity of layer E2 neurons
is higher than Y selectivity (triangles). Thus the network
response is more selective for the slow X parameter and more
invariant with respect to the continuously changing Y param-
eter. The pattern is reversed for the simulation with Y as the
slow parameter (diamonds).

The results are very similar for the simulations with the
prism stimulus set (Fig. 6B), despite different spatial correla-

tions in the stimulus sets. For the COIL stimuli, results for the
Y (object identity) slow condition are similar (Fig. 6C). In the
X (viewing angle) slow condition the distribution selectivity
indices are near the diagonal (similar X and Y selectivities),
slightly shifted toward higher Y selectivity. This reflects the
strong asymmetry in spatial correlations in the COIL stimuli.

Estimation errors quantify the stability and selectivity of the
neural responses. If a neuron has high selectivity for a stimulus
parameter and maintains this selectivity during the succeeding
learning epoch, estimation errors will be low. Conversely, if
selectivity is low, the neural activity contains little information
about the stimuli, estimation is random, and estimation errors
are uniformly distributed. Figure 7A shows the distribution of
the estimation errors for the simulation with the prism stimuli
and Y as the slow parameter. The X estimation error is nearly
uniformly distributed, whereas the Y estimation error distribu-
tion is skewed toward low error values and has a maximum at
zero (perfect prediction). This indicates that the learned repre-
sentation is suitable for representing object identity (Y param-
eter), whereas the responses are not selective for viewing angle
(X parameter).

When we used viewing angle (X) as the slow parameter the
picture is reversed (Fig. 7C): X estimation errors were low and
Y estimation errors were nearly uniformly distributed. Thus in
this learning condition the network has learned a representation
that can effectively code for the viewing angle but is invariant
with respect to object identity. Note that the X error distribu-
tion has a second peak at error value 7 (visible in Fig. 7, B and
C), which is caused by the rotation symmetry of the prism
stimulus.

For comparison we repeated the simulations with a random
order of stimulus presentation. Thus there were only spatial
and no temporal correlations. Figure 7B shows the estimation
errors for this learning situation. The peaks in the distributions

FIG. 5. Representations of object views.
After learning with the COIL stimulus set in
the “Y (object identity) slow” condition,
different views of the same object (top row)
evoke localized activity patches (middle
row) at neighboring positions in the map
layer. In the bottom plot, contours denoting
the position of each activity patch are super-
imposed, illustrating the continuous shift of
activity with viewing angle.

FIG. 6. X and Y selectivities of layer E2
neurons. For all layer E2 neurons X selec-
tivities are plotted against Y selectivities for
the “X slow” (triangles) and the “Y slow”
(diamonds) condition, for the Gaussian (A),
Prism (B), and COIL (C) data sets. Selectiv-
ity for a given parameter is higher when the
parameter is slowly changing than when it is
fast changing.
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for low errors are much smaller and reflect the spatial corre-
lations in the stimuli.

Parameter variations

To test the robustness of the learning mechanism, we sys-
tematically varied stimulus timing and the properties of exci-
tatory and inhibitory lateral connections. For these tests we
used the Gaussian stimuli with Y as the slow parameter. To
evaluate the network performance we defined test trials with an
estimation error e 
2 as correct predictions and the proportion
of correct predictions as the performance. These performance
values were plotted against the variations of simulation
parameters in Fig. 8. Strong invariance is indicated by a
high value in the Y performance and low value in the X
performance because Y was the slow parameter. Chance
level is 3/20 � 0.15.

We varied range and strength of lateral excitatory connec-
tions (�E1,E1, SE1,E1), strength of lateral inhibition (SE2,E1), and
the stimulus timing (tstim). Figure 8, A–C shows the depen-
dence of the X and Y performance on the range of the lateral
excitatory connections for three different stimulus timing con-
ditions (tstim � {10, 20, 40 ms}). The network shows high
invariance in a range 4 
 �E1,E1 
 5 for all three stimulus
timing conditions (Fig. 8, A–C). In Fig. 8D the stimulus timing

was varied in the range 5 ms 
 tstim 
 100 ms, whereas all
other parameters were constant. For long stimulus presentation
times of tstim 
70 ms the performance for the fast and the slow
parameters were very similar around 0.5, and thus the re-
sponses in layer E2 showed no invariance.

When the strength of the lateral connections between E1
neurons was varied, the network showed high performance in
a range 0.07 
 SE1,E1 
 0.13 (Fig. 8E). Without the lateral
connections (SE1,E1 � 0), performance dropped to chance
level. For weights 
0.15 performance decreased as well. Thus
although these ranges were fairly broad, lateral extent and
strength of the lateral excitation should be within a proper
range, corresponding to relative changes by a factor of 2. In
contrast, the strength of the lateral inhibitory connections is
uncritical (Fig. 8F). Network performance is very robust
against increased inhibition over a wide range. Likewise,
varying the time constants of the learning rule, �pre and �post, by
a factor of 2 from 10 to 20 ms, did not lead to qualitatively
different results (data not shown).

The emergence of topographic maps in our model critically
depends on persistent activity in localized groups of neurons,
which acts as a memory trace. Figure 9A shows how the size of
the activity patches representing the stimuli depends on the
parameters of the lateral connectivity. Patch size increases with

FIG. 8. Effects of model and stimulus pa-
rameters on network performance. The net-
work was trained with the Gaussian stimuli
with Y as slowly changing parameter. The
diagrams show the dependence of the X and
Y performance on the range of the lateral
connections in E1(�E1,E1) and stimulus se-
quence speed tstim. An invariant representa-
tion is indicated by high Y performance and
low X performance. With a lateral interac-
tion range � � 4 the network learned invari-
ant representations for a wide range of stim-
ulus speed values. A: fast tstim � 10 ms.
B: tstim � 20 ms. C: tstim � 40 ms. D: with
increasing stimulus duration tstim, Y perfor-
mance increases and X performance drops.
E: strength of the lateral connections in
E1(SE1,E1) was varied. F: strength of the
lateral inhibitory connections (SI1,E1) was
varied.

FIG. 7. Estimation errors of layer E2 ac-
tivity for simulation with the prism stimuli.
A: Y (object identity) was the slow parame-
ter, X (viewing angle) the fast changing
parameter. B: random order of stimuli. C: X
was the slow and Y the fast changing param-
eter.
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larger lateral excitation range �E1,E1 and decreases with stron-
ger lateral inhibition. However, the strength of lateral excita-
tory connections, determined by the amplitude of the Gaussian
kernel SE1,E1, did not influence the size of activity patches.
Patch size in turn influenced the learned stimulus preference
maps. As Fig. 9B shows, larger patch size leads to maps with
lower spatial frequency.

D I S C U S S I O N

We investigated a mechanism for learning invariant proper-
ties of input stimuli. This mechanism implements the idea of
extracting slowly varying features from input sequences. It can
be applied for learning invariant representations of visual
objects. When view-variant retinal projections of an object are
presented successively, the spatiotemporal correlations in the
input lead to a locally connected, restricted representation in a
topographic map. This topographic representation can be used
to produce invariant responses in neurons at a successive stage,
without further learning, via a simple, unspecific connection
scheme. Our approach combines the principles of invariance
learning by exploiting temporal correlations and self-organiza-
tion of topographic maps. Furthermore, it demonstrates that
learning of slowly varying features can be achieved in a
network of spiking neurons, which is a necessary requirement
for a biologically realistic mechanism. Furthermore, our results
suggest a functional relevance of cortical topographic maps.

Spatiotemporal input correlations and topographic maps

The architecture of our network is similar to that proposed
by von der Malsburg (1973). This architecture is an application
of the principle of pattern formation by local self-enhancement
and long-range inhibition (Gierer and Meinhardt 1972). The
basic building blocks are adaptive, Hebbian forward connec-
tions, long-range lateral inhibition, and short-range lateral
excitatory connections. Trained with a set of stimuli, such
networks transform the spatial correlations between stimuli
into spatial proximity of their representations in the emerging
map (Choe and Miikkulainen 1997; Kohonen 1982; von der
Malsburg 1973).

It is possible to learn view-invariant representations by using
spatial correlations only (Stringer et al. 2006), but this requires
that spatial correlations between different views of the same
object are higher than spatial correlations between views of
different objects. This is the case for our simulations with the
COIL stimulus set. Even without temporal correlations along
the object dimension, the strong spatial correlations along the
viewing angle dimension and weak spatial correlations along

the object dimension lead to selectivity for object identity.
However, in many real-life viewing situations views of differ-
ent objects (such as faces) can be highly correlated if seen from
the same viewing angle, whereas different views of the same
object can result in highly different retinal images. With such
a stimulus set Wiemer (2003) observed emergence of selectiv-
ity for viewing angle. As with our COIL stimulus set, the
spatial correlations in the stimulus set dominated the selectivity
after learning.

Our prism stimulus set has correlations along both dimen-
sions of the stimulus set (viewing angle and object identity).
Under these conditions, spatial correlations alone are not suf-
ficient to learn view-invariant representations that are selective
for object identity. Therefore both spatial and temporal corre-
lations must be exploited.

Under natural viewing conditions different views of the
same visual object often occur in temporal proximity. We
mimicked such viewing conditions by creating stimulus se-
quences with temporal correlations along only one dimension of
the stimulus space. Many different models have been proposed for
how these temporal correlations can be used for learning invariant
representations of visual objects (Becker 1993; Einhäuser et al.
2005; Földiák 1991; Rolls and Stringer 2006; Stringer and Rolls
2002; Wallis and Rolls 1997; Wiemer 2003; Wiemer et al.
2000; Wiskott and Sejnowski 2002). Our study shows how a
biologically plausible network of spiking neurons can make
use of temporal correlations to achieve invariant representa-
tions.

In contrast to most models of self-organizing maps (e.g.,
Choe and Miikkulainen 1997; Erwin et al. 1995; Goodhill and
Cimponeriu 2000; Goodhill and Willshaw 1990; Kohonen
1982; Swindale 1996; von der Malsburg 1973) in our simula-
tions the network response to a stimulus depends not only on
the learned forward connections, but also on the past activity of
the map layer. A related principle has been investigated by
Wiemer (2003). However, in this study, the relevance of the
learned topography for invariant representations was not con-
sidered.

Network dynamics and influence of parameters

In previous models for invariance learning from temporal
correlations (Einhäuser et al. 2005; Földiák 1991; Rolls and
Milward 2000; Wiskott and Sejnowski 2002), the slowness
principle was built into the learning rule. In our network, the
synaptic learning rule operates only on a fast timescale. It
cannot capture temporal correlations on a timescale much
longer than 20 ms. Temporal input correlations on a longer

FIG. 9. Patch size depends on range of lateral excitation and
strength of inhibition. A: size of activity patches plotted against
the strength of lateral inhibition SE1,I1 for 3 different ranges of
lateral excitation �E1,E1. Patch size (in numbers of neurons) is
measured as the width at half-height of the activity patch. Patch
size increases with larger lateral excitation range �E1,E1 and
decreases with stronger lateral inhibition. B: map spatial fre-
quency for different parameter sets (conditions A–C) in A).
Larger size of activity patches results in lower spatial frequency
of the learned preference map. Y was the slow parameter.
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timescale are extracted by the network dynamics. Therefore the
exact implementation of the learning rule—in particular, the
pre- and postsynaptic terms—is uncritical. As Almassy et al.
(1998) pointed out, a continuous firing of a local group of
neurons has an effect that is similar to Földiák’s postsynaptic
memory trace. In our network, persistent firing of local groups
of E1 neurons is enabled by excitatory lateral interactions in
layer E1, which are mediated by fast decaying AMPA currents
and slowly decaying NMDA (�decay � 100 ms, Table 4)
currents. These connections provide a local positive feedback,
whereas the long-range inhibition reduces the activity in other
parts of the layer. This is a neural implementation of the
mechanism of biological pattern formation proposed by Gierer
and Meinhardt (1972). Note that for this mechanism to work in
our case, the time constant of the slow excitatory component
(NMDA) must be slower than the time constant of lateral
inhibition (GABA). Otherwise, the lateral inhibition would
synchronize the whole network and destroy competition be-
tween different parts of the map.

The combination of short-range lateral excitatory connec-
tions and long-range inhibition enhances activity differences in
the E1 layer and results in a competitive network dynamics and
local patches of activity can form. Furthermore, in the absence
of E0 input, an activated local patch of neurons can keep its
activity. This persistent activity is weakened by the depression
mechanism in the excitatory lateral synapses. As a result, the
patch of activity can move continuously in the E1 layer.
Therefore stimuli that occur in temporal sequence—typically
different views of the same object—tend to be represented in
neighboring regions of the map (Fig. 5).

The specific network dynamics is an essential feature under-
lying the formation of the topography that captures spatiotem-
poral correlations. Thus according to our model, one would
expect to find persistent activity of local groups of neurons in
cortical areas with topographic maps. Furthermore, one would
expect that features with similar spatial correlations are repre-
sented closer to each other if they are also temporally corre-
lated. This could be tested in experiments investigating the
selectivity to object stimuli (e.g., Logothetis et al. 1995) by
varying the temporal correlations of the stimuli.

The size of an activity patch in the E1 layer mainly depends
on the interaction of positive feedback from the activity center
and negative feedback from global inhibition. It increases with
longer lateral connections (�E1,E1) and decreases by stronger
lateral inhibition (SE1,I1) (Fig. 9). Despite the dependence of
network dynamics on several network parameters, our network
is robust against changes in a wide range of parameters (Figs.
8 and 9).

In this study we considered the learning of topographic
maps. Other parameters like the connectivity from E1 to E2
were fixed. To achieve invariant responses in layer E2 the
convergence from layer E1 to E2 (�E2,E1) must be in the range
of the patch size in the topographic map for the slow stimulus
parameter. Furthermore, we assume that network dynamics and

learning rate are appropriate with respect to the typical time
constants of changes in the inputs. In a biological network the
relevant parameters would have to be adjusted by learning or
evolutionary adaptation.

Models of invariant representations

An early approach for invariant object recognition is the
dynamic routing model (Olshausen et al. 1993). In this model
the visual input is transformed into a canonical, object-based
reference frame. Although this mechanism can solve the prob-
lem of scale and translation invariance, it is insufficient for
achieving view invariance because there is no simple geomet-
ric transformation between the front view and the back view of
an object. Riesenhuber and Poggio (1999) proposed a hierar-
chical model that relies on the two alternating operations,
template matching and pooling units (complex cells), and
thereby achieve invariance over the corresponding subset of
basic features. They suggest that the proposed connectivity
could be learned with the trace rule (Földiák 1991). The VisNet
model by Stringer and Rolls (2002) demonstrates how com-
plex-cell connectivity can be learned from temporal correla-
tions in continuous image sequences. Our model extends these
approaches and further suggests a possible role of topographic
maps for invariant object representations.

Topographic representation and invariant responses

As our results show, a topographic representation can be
used to generate invariant responses by simple neural mecha-
nisms. The invariance properties of the output layer (E2)
neurons in our model (Fig. 3B) are a consequence of the
topography in the map layer (E1) because E2 neurons receive
input from a localized region in E1 and therefore represent the
average activity in this region. After training with sequences of
object views, neurons selective for different views of the same
object are clustered in a local neighborhood in E1. Neurons in
E2 average over such a neighborhood and thus their responses
are invariant to viewing angle while maintaining selectivity for
object identity. Thus invariance arises from the learned topog-
raphy through a generic connection scheme without the need
for further learning. Without a topography, to achieve invari-
ance in E2 neurons would require specific connections from
E1. Learning such specific connections is more costly because
a higher number of initial connections must be provided. To
achieve an invariant object representation from a population of
feature coding cells, those cells must be selected that code for
the same object. If these cells were randomly distributed
(salt-and-pepper arrangement) in the previous processing layer,
a high connectivity would be needed initially to ensure that
there is at least one cell in the invariance layer that receives
connections from all of them. Furthermore, another learning
step would be required to achieve the adequate connectivity for
invariant responses. In contrast, in our model invariant re-
sponses arise from averaging over a local neighborhood of the
topographic map via fixed forward connections that need no
further modifications.

The formation of cortical maps has been suggested to be the
result of the minimization of wiring length between neurons
processing related stimuli (Koulakov and Chklovskii 2001).
Our approach is entirely compatible with this view because, in

TABLE 4. Time constants for synaptic currents

�raise, ms �decay, ms

AMPA 0.5 2.4
GABAA 1.0 7.0
NMDA 5.5 100.0
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our simulations, the topographic maps emerge as a conse-
quence of the assumption that lateral connections have limited
length. In addition, our results demonstrate that the clustering
of neurons with similar properties in these maps has the
functional benefit that invariance with respect to certain stim-
ulus dimensions can be achieved in a straightforward way.

Conclusions

We propose a mechanism for spatiotemporal correlation-
based invariance learning that is compatible with the functional
architecture and plasticity mechanisms in the cortex. Our
network transforms spatiotemporal correlations of the input
sequence into the topography of a self-organizing map. The
activity in our network shows similarities to neural activity in
inferotemporal cortex (IT), which contains a topographic rep-
resentation of object features (Tanaka 1996, 2003). The basic
mechanisms of our model exist in the ventral pathway of the
visual cortex. Therefore it is feasible that the emergence of
object feature topography in IT may be based on the principles
proposed in our model.

The aim of this work, however, was not to model a specific
cortical area. The invariance learning mechanism we described
here could be at work for features of any complexity, at any
stage in the cortical hierarchy, and in any sensory modality,
corresponding to the widely observed occurrence of topo-
graphic maps in the cortex.
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Supplemental Figures for “Using Spatio-Temporal Correlations to
Learn Topographic Maps for Invariant Object Recognition.”
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Figure S1: Stimulus sequences during training. a) Training condition “X slow”. The X parameter was kept constant
for time intervals tconst (see Methods), while the Y parameter changed continuously. After tconst, both parameters switch
to randomly chosen values. b) In the “random” training condition there are no temporal correlations between different
stimuli c) In the “Y slow” training condition the temporal correlations are reversed with respect to the “X slow” condition.
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Figure S2: Time course of X and Y preference maps during learning. From left to right X (top) and Y (bottom)
preference maps are shown after 250s, 1250s, 2500s, 3750s, 5000s training time. Color code as in Figure 4. Stimulus
preferences converge after about 2500s training time.
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Figure S3: Convergence of topographic maps. For each neuron the X and Y preferences after each 250 s training epoch
were compared to the preferences after the preceding training epoch. The percentage of neurons with a difference larger
than 1 is plotted against learning time for the “Y slow” condition. Changes in preferences converge after about 2500 s.
The remaining variability is lower for the slow parameter than for the fast changing parameter.
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3.2 Adaptive Feedback Inhibition Improves Pattern Discrim-
ination Learning

Summary

The following publication titled “Adaptive Feedback Inhibition Improves Pattern
Discrimination Learning” (Michler, Wachtler, and Eckhorn, 2006) addresses the prob-
lem of learning to differentiate very similar patterns in a network of spiking neurons.
Two well established principles for pattern learning in neural networks are Hebbian
plasticity and lateral inhibition. These principles provide the basis for competitive
learning, and networks based on them can learn representations suitable to differ-
entiate patterns with a moderate amount of similarity (percentage of overlapping
input pixels). However, this solution fails for a set of patterns with a large amount
of overlap.

To cope with large overlap, we propose the following mechanism, which imple-
ments the idea of predictive coding (Rao and Ballard, 1999) in a network of spiking
neurons:

1. Make a reconstruction (prediction) of the input based on the current network
activity. This reconstruction represents what the network already "knows"
about the current input pattern.

2. Subtract the reconstructed pattern from the actual input.

3. Use the remaining difference to improve the internal representation.

The representation of learned input patterns is encoded in the synaptic weights
of feedforward connections from input to output neurons. Subtraction of this known
representation can be achieved by inhibitory feedback connections from output to
input neurons. Weights for these inhibitory connections are adjusted by an anti Heb-
bian learning rule.

Our results show that the architecture based on Hebbian learning and lateral in-
hibition fails to differentiate patterns with an overlap exceeding 75 %. After adding
adaptive inhibitory feedback connections, the network learns to differentiate be-
tween patterns of up to 88 % overlap.

In conclusion, anti-Hebbian learning of inhibitory feedback connections can im-
prove representations of a feedforward pathway in spiking neural networks.
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Abstract. Neural network models for unsupervised pattern recognition learning
are challenged when the difference between the patterns of the training set is
small. The standard neural network architecture for pattern recognition learning
consists of adaptive forward connections and lateral inhibition, which
provides competition between output neurons. We propose an additional adap-
tive inhibitory feedback mechanism, to emphasize the difference between train-
ing patterns and improve learning. We present an implementation of adaptive
feedback inhibition for spiking neural network models, based on spike timing
dependent plasticity (STDP). When the inhibitory feedback connections are ad-
justed using an anti-Hebbian learning rule, feedback inhibition suppresses the
redundant activity of input units which code the overlap between similar stimuli.
We show, that learning speed and pattern discriminatability can be increased by
adding this mechanism to the standard architecture.

1 Introduction

1.1 Standard Architecture

Standard neural networks for unsupervised pattern recognition learning typically con-
sist of adaptive forward connections and lateral inhibition (e.g. Fukushima 1975;
Földiák 1990). Usually, the forward connections are modified using Hebbian learn-
ing rules: if pre- and postsynaptic activity is highly correlated, excitatory synapses are
strengthened while inhibitory synapses are weakened. For excitatory synapses, Heb-
bian learning increases the correlation between pre- and postsynaptic activity and the
connections grow infinitely. Connection strengths can be limited e.g. by using normal-
ization mechanisms.

Lateral inhibitory connections introduce a winner-take-all (WTA) dynamics: if an
output neuron is strongly activated, other output neurons receive strong inhibition and
generate little or no output activity. WTA prevents the output neurons from being active
all at the same time. When the lateral inhibitory connections are learned with an anti-
Hebbian learning rule, as proposed by Földiák (1990), connections are strengthened
if correlation between pre- and postsynaptic activity is high. Thus, strongly correlated
output neurons will have strong inhibitory connections, which will reduce their correla-
tion. This decorrelation can lead to a sparse representation of the input stimuli (Földiák,

F. Schwenker and S. Marinai (Eds.): ANNPR 2006, LNAI 4087, pp. 21–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1990). After self-organization, the neurons in the output layer of such networks should
respond selectively to a single stimulus pattern or a subset of the training set, depending
on the relation between the size of the stimulus set and the number of output neurons.

1.2 Improving Discrimination Performance with Feedback Inhibition

Consider a two layer network with an input and an output layer, and lateral inhibi-
tion between output neurons. What happens when the network is trained with a set of
very similar stimuli? Typically the forward connections from the uninformative input
neurons coding the overlap between stimuli will become much stronger compared to
the connections coding features unique to certain stimuli (Fukushima, 1975; Földiák,
1990). Beyond a certain degree of stimulus similarity the output neurons only respond to
the overlap, and thus fail to discriminate between the stimuli. Miyake and Fukushima
(1984) proposed a mechanism to improve pattern selectivity fur such situations: they
introduced a simple version of modifiable inhibitory feedback connections from the
output units to the input units. These connections were paired with modifiable excita-
tory feedforward connections. When a feedforward connection was strengthened, the
corresponding feedback connection was strengthened as well.

In this paper we show that this adaptive feedback inhibition can be generalized and
adapted to a biologically more realistic network model with spiking neurons and spike
timing dependent plasticity (STDP) based learning rule (Bi and Poo, 1998). We sys-
tematically varied the overlap between the patterns of the stimulus set and show how
learning speed and selectivity increases after introducing modifiable inhibitory feed-
back connections.

Using spiking neural network models aims towards an understanding of how pat-
tern recognition problems could be solved in the brain. If a mechanism can not be
implemented with biologically realistic spiking neurons, then it is unlikely that this
mechanism is used in the brain. Furthermore spiking neurons provide for high tem-
poral precision, which is relevant for real-world applications. This is the case e.g. for
spatio-temporal pattern recognition or for audio patterns.

2 Model

2.1 Network Architecture

The network is organized in two layers of spiking neurons: the input layer U0 and the
representation layer U1 (Fig. 1). There are excitatory forward connections from U0

to U1 and lateral inhibitory connections between all U1 neurons. These connections
are adapted due to the correlation between presynaptic and postsynaptic spikes with a
Hebbian and anti-Hebbian learning rule, respectively (Section 2.3). So far this is the
standard architecture for competitive learning. Additionally, we introduce modifiable
inhibitory feedback connections from U1 to U0. These inhibitory connections are also
adapted using an anti-Hebbian learning rule.

2.2 Model Neurons

As a spiking model neuron we use the two dimensional system of differential equations
proposed by Izhikevich (2003):
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Input patterns

spiking model

neuron

output

excitatory
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inhibitory
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Fig. 1. Model architecture. The neurons of the input layer U0 are activated when they are part of
the current input pattern. U0 neurons have modifiable excitatory connections to the representation
layer U1. U1 neurons mutually inhibit each other. Additionally there are modifiable inhibitory
feedback connections from U1 to U0. To better illustrate the network structure, connections from
and to one of the neurons are plotted with black color while the other connections are plotted
gray.

dV (t)

dt
= 0.04V 2(t) + fV (t) + e− U(t) + I(t), (1)

dU(t)

dt
= a(bV (t)− U(t)) (2)

with the auxiliary after-spike reseting:

if V (t) ≥ 30mV, then

{
V (t)← c,
U(t)← U(t) + d.

(3)

V (t) and U(t) are dimensionless variables. V (t) represents the membrane potentials in
mV . I(t) is the synaptic input current. a, b, c, d, e and f are dimensionless parame-
ters which determine the properties of the model neuron. In the simulations presented
here we use a set of parameters which correspond to regular spiking cortical pyramidal
neurons (example "L" in Izhikevich, 2004, a=0.02, b=-0.1, c=-55, d=6, e=108, f=4.1).
The excitatory synaptic input Ie is modelled as a current injection with additional noise
σ(t). The inhibitory input Ii is modelled as a conductance based current. The excitatory
synaptic input saturates at Ie,max. The inhibitory conductance saturates at Gi,max:

I = Se(Ie)− Si(Gi)(V − Ei), (4)

Se(Ie) = Ie,max
Ie

Ie + 1
, (5)

Si(Gi) = Gi,max
Gi

Gi + 1
, (6)

d

dt
Ie = − 1

τe
Ie +

M−1∑

m=0

we,mδm(t) + σ(t), (7)
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d

dt
Gi = − 1

τi
Gi +

M−1∑

m=0

wi,mδm(t). (8)

The saturation constants were set to Ie,max = 200 and Gi,max = 4.5 to restrict excita-
tory and inhibitory input to a range where the numerical integration of the differential
equations still works properly for dt = 0.25ms. The excitatory and inhibitory synaptic
currents decrease exponentially with time constant τe and τi respectively, which were
arbitrarily set to 5ms. The biologically realistic range for the decay time constants of
excitatory AMPA- and inhibitory GABAA-currents is from 5 up to 50 ms. we,m is
the excitatory weight from the presynaptic neuron number m. δm(t) is 1 when a spike
arrives at the presynaptic site, otherwise it is 0. Ei is the reverse potential for the in-
hibitory current which was chosen to be 10 mV lower then the resting potential.

2.3 Learning Rules

The synaptic weight wm,n of the connection from presynaptic U0 neuron m to postsy-
naptic U1 neuron n is adapted according to a Hebbian learning rule:

d

dt
wm,n = δn(t)RLpre,mLpost,n, (9)

Lpre,m =
∑

tsm

e
− t−tsm

τpre , (10)

Lpost,n =
∑

tsn

e
− t−tsn

τpost . (11)

δn(t) is 1 when a spike occurs in the postsynaptic neuron n. tsm and tsn denote the
times of the past pre- and postsynaptic spikes. When a spike occurs, the pre- or post-
synaptic learning potentials Lpre,m or Lpost,n are increased by 1. They exponentially
decrease with time constant τpre = 20ms and τpost = 10ms. R is a constant corre-
sponding to the learning rate and was tuned to allow for a weight change between 5 and
20 % after 10 stimulus presentations. For the excitatory connections from layer U0 to
U1, we use a quadratic normalization rule:

wm,n(t) = W
wm,n(t− dt)√∑M−1
m=0 w2

m,n(t− dt)
, (12)

where W is a constant value to adjust the quadratic weight sum. This prevents infi-
nite growing of weights and introduces competition between the input synapses of a
postsynaptic neuron. Physiological evidence for the existence of such heterosynaptic
interactions were found, e.g., by Royer and Paré (2003). W was set to a value which
ensured a medium response activity at the beginning of the learning phase.

For the inhibitory connections we use the following anti-Hebbian learning rule:

d

dt
wm,n = R

(
δn(t)Lpre,m − Cδm(t)wm,nLpost,n

)
, (13)

Lpre,m = e
− t−tsm

τpre , (14)

Lpost,n = e
− t−tsn

τpost . (15)
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Fig. 2. Network without feedback inhibition, response before learning. a: Spikes of input layer
U0. b: Spikes of representation layer U1. c: Membrane potential V (t) of neuron #0 of U1 (gray
line in b).

The equations are very similar to the Hebbian learning rule (equation 9) but with an
additional depression term. The decay time constants of the learning potentials were
set to τpre = 30ms and τpost = 100ms. C is a constant to adjust the ratio between
potentiation and depression which determines the amount of inhibition. With lower
C the inhibitory connections will be stronger. C was set to 0.005 for the feedback
inhibition and 0.001 for the lateral inhibition. tsm and tsn denote the time of the last
pre- and post- synaptic spike event respectively.

2.4 Stimuli

The input stimuli are binary spatial patterns that lead to additive modulation of excita-
tory synaptic current Ie (equation 4) of layer U0 neurons:

Ie(t) =
∑

i∈N

pki
n I0rect

(
t− iτ1

τ2

)
, (16)

rect(t) =

{
1 : |t| < 0.5
0 : otherwise .

(17)

pn
ki

is 1 if the neuron n is active for stimulus ki, and 0 otherwise. I0 is the input strength.
τ1 is the time difference between stimulus onsets, τ2 is the duration of a single stimulus
presentation (see Fig. 2 for an example). k1, k2, ..., ki is a random sequence of stimulus
numbers.

For a systematic variation of the similarity between the input patterns, we constructed
sets of stimuli as follows: each stimulus is a binary pattern Pk of NU0 elements where
NU0 is the number of neurons in the input layer.

Pk = (pk
1 , pk

2 , pk
3 , ..., p

k
NU0

), (18)
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Fig. 3. Network without feedback inhibition, response after learning. a: Spikes of input layer U0.
b: Spikes of representation layer U1. c: Membrane potential V (t) of neuron #0 of U1 (gray line
in b).

pk
m =

⎧
⎨
⎩

1 , m ≤ no

1 , no + nu(m− 1) < m ≤ no + num
0 , otherwise .

(19)

na = faNU0 is the number and fa the fraction of active neurons in each pattern. no =
fona is the number of neurons which are active in each pattern (overlap) and nu =
na − no is the number of neurons which are unique for each pattern.

2.5 Performance Measure

In order to quantify the ability of the network to discriminate between the stimuli, we
simulated a test phase after every learning phase. In the test phases the network was
stimulated with the same input patterns as in the learning phases. We calculated the
preferred stimulus κn and a selectivity index ηn for every U1 neuron:

κn =
{
k : Rn,k = max({Rn,1, ..., R1,K})

}
, (20)

ηn =
Rn,κn∑K
k=0 Rn,k

− 1

K
. (21)

K is the number of stimuli. κn is the number of the stimulus which evokes the maximal
response in U1 neuron n. The selectivity index ηn is 0 if all stimuli evoke the same
response Rn,k, which means that this neuron bears no information about the identity
of the stimulus. The maximum selectivity is K−1

K when only one stimulus evokes a
response but the others do not. From the following test phase we calculated how the
activity of the U1 neurons predict the identity of the input patterns: for each stimulus
onset we derived the response rn,i for every U1 neuron (number of spikes in a specified
interval after stimulus onset), where j is the number of the current stimulus. Combining
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Fig. 4. Network with feedback inhibition, response after learning. a: Spikes of input layer U0. b:
Spikes of representation layer U1. c: Membrane potential V (t) of neuron #0 of U1 (gray line in
b). The feedback inhibition circuit causes rhythmic spike patterns in both layers.

these responses with the preference and the selectivity of the neurons, we calculated the
stimulus νj predicted by this network activity:

νj =
{
k : ξk = max({ξ1, ..., ξK})

}
, (22)

ξk =
∑

nε{i:κi=k}
ηnrn,k . (23)

If νj = j then the prediction is correct, otherwise it is false. The performance ρ is then
ρ = nhit

nhit+nfail
where nhit is the number of correct predictions and nfail the number

of mistakes. The chance level is 1
K .

3 Results

First we demonstrate the properties of the network without feedback inhibition for a
stimulus set with little overlap (50%). The number of stimuli was K = 4. The numbers
of neurons were: NU0 = 40 and NU1 = 16. Before learning, the network responds
unselectively to the input stimuli (Fig. 2). The network quickly converges to a selective
state: for each stimulus there is at least one U1 neuron that selectively responds to it
(Fig. 3).

When we systematically increased the overlap between the elements of the stimulus
set the network needed longer to reach a selective state. When the overlap was very
high it completely failed to discriminate between the stimuli (Fig. 5).

When we added the modifiable inhibitory feedback connections, the network took
less time steps to reach a selective state. Even for high overlap, where it had failed
without feedback inhibition, the network learned a selective representations (Fig. 6).
Furthermore, the feedback inhibition causes rhythmic spike patterns in both layers and
synchronizes the activated neurons (Fig. 4).
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Fig. 5. Learning curves without feedback inhibition. A trial consisted of 40 stimulus presenta-
tions. For overlap up to 75% the network quickly learned a selective representation. For higher
overlap it took longer training time to reach a selective state. For overlap higher than 88% the
network stayed in an unselective state. Input strength: I0 = 0.008.

Because the feedback inhibition reduces the spiking activity in U0, we compensated
this effect by increasing excitatory input strength I0 (see equation 16) when turning
on the feedback inhibition. To make sure that the differences in learning speed and
learning performance were not caused by these parameter changes, we systematically
tested the effect of different input strengths. We calculated a performance index for
each I0 value by averaging the performance values for the second half of learning trials
over all overlap levels. Without feedback inhibition the maximum performance of the
network (at I0 ≈ 0.008) was still lower than the maximum performance of the network
with feedback inhibition (Fig. 7).

4 Discussion

Our simulations show that in a network of spiking neurons adaptive feedback inhibition
can speed up learning of selective responses and enable discrimination of very similar
input stimuli. The mechanism works as follows: While the network is in an unselective
state, the correlation between the output units and these input units which code the
overlap (pk

1 ...p
k
no

in Eq. 18) is higher than the correlation between the output units
and the input units which are unique for different patterns. Therefore, the inhibitory
connections to the input neurons representing the overlap will grow stronger and the
redundant activity will be reduced. In contrast, the input neurons coding the difference
between the stimuli receive less inhibition. Thus, the network can use the discriminative
information carried by these neurons to learn a selective representation.

The network parameters were chosen in a biologically realistic range. The input
strength I0 and the feed forward weight sum W were set to obtain reasonable firing
rates. The learning parameters that control the inhibitory connections (C, τpre, τpost)
must be guanrantee a substantial amount of inhibition. Overall the mechanism doesn’t
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Fig. 6. Learning curves with feedback inhibition ; a trial consisted of 40 stimulus presentations.
For the low overlap stimulus sets (50% - 81%) the network converged to a selective state faster
than without feedback inhibition. Even for very high overlap (94%) the network still learned
some selectivity. Input strength: I0 = 0.016.

depend on the precise values of the parameters. Small or medium parameter changes do
not qualitatively alter the properties of the network.

4.1 Comparison to Other Models

Miyake and Fukushima (1984) had already proposed a inhibitory feedback mechanism
and showed how it could be included in their Cognitron model. They demonstrated
the increased selectivity using stimulus pairs with up to 50% spatial overlap. As our
simulations show, such an amount of overlap can still be separated using a network
without feedback inhibition (Fig. 5).

Spratling (1999) had proposed a pre-integration lateral inhibition model. In this
model for example an output neuron Oi which has strong excitatory connection from in-
put neuron Ij will have strong inhibitory influence on the excitatory connections from
Ij to the other output neurons Ok �=i. Spratling and Johnson (2002) showed that pre-
integration lateral inhibition can enhance unsupervised learning. Spratling (1999) ar-
gues against the feedback inhibition model, that an output neuron cannot entirely inhibit
the input to all other neurons without entirely inhibiting its own input.
van Ooyen and Nienhuis (1993) point out a similar argument: With feedback inhibition
the Cognitron model fails to elicit sustained responses for familiar patterns, because the
corresponding input activity is deleted. But these drawbacks do not hold in our dynamic
model: After strong activation of an output neuron Oi, the feedback inhibition will sup-
press the input and thus prevent all output neurons from firing including Oi. Inhibition
is reduced, and excitatory input can grow again. Thus, for sustained input, the inhibitory
feedback generates rhythmic chopping of both input and output layer neurons (Fig. 4).
The strongest activated output neurons are able to fire output spikes before inhibition
grows, while weakly activated output neurons are kept subthreshold. Furthermore, the
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Fig. 7. Performance depends on input strength I0. The data points show mean performance val-
ues, averaged over all overlap values and the second half of the learning trials. Black: Performance
with feedback inhibition. Green (gray): Performance without feedback inhibition. Note that with
feedback inhibition the network reaches higher performance values (90% compared to 75%).

common feedback inhibition tends to synchronize the activity of these input neurons
which are part of the recognized pattern. Such a synchronization has been proposed
to support object recognition through dynamic grouping of visual features (see e.g.
Eckhorn, 1999; Eckhorn et al., 2004). In the model presented here, synchronization oc-
curs as a consequence of successful pattern recognition.

The adaptive feedback inhibition model is in line with predictive coding models
(Rao and Ballard, 1997). These models are based on the working principle of extended
Kalman filters, where a prediction signal is subtracted from the input. Thus, in these
models the predicted (expected) information is suppressed. This approach is the op-
posite to the Adaptive-Resonance-Theorie (ART), which is based on enhancement of
predicted information (Grossberg, 2001).

4.2 Physiological Equivalent

What could be a physiological basis for the proposed feedback inhibition mechanism?
The main input to a cortical area arrives in layer 4 (Callaway, 1998). For example,
layer 4 of the primary visual cortex receives input from the thalamic relay neurons of
the lateral geniculate nucleus (LGN). Neurons in layer 2/3 have more complex recep-
tive fields. They represent the main output of a cortical module to other cortical areas
(Callaway, 1998). Thus, layer U0 of our model corresponds to cortical layer 4 and layer
U1 to cortical layer 2/3.

Among direct input from thalamic relay neurons, layer 6 neurons receive feedback
connections from layer 2/3. In visual area V1 they project back to the LGN but also have
collaterals which project to layer 4, where they mainly target inhibitory interneurons
(Beierlein et al., 2003). Thus, the anatomy of the neocortex provides the necessary con-
nections for adaptive feedback inhibition: layer 4→ layer 2/3→ layer 6→ inhibitory
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excitatory neuron

inhibitory interneuron

excitatory synapse

inhibitory synapse

layer 2/3

layer 4

layer 6

LGN or

layer 2/3 of other

cortical area

Fig. 8. Possible microcircuit underlying selective feedback inhibition: information enters the
cortical module via layer 4, layer 2/3 learns selective representation of input patterns and projects
back to layer 6, layer 6 neurons have projections to inhibitory interneurons in layer 4

interneurons of layer 4. This microcircuit could provide the basis for the suppression of
uninformative input activity (Fig. 8).

We have shown, that adaptive feedback inhibition can increase learning speed and
improve discrimination of highly similar patterns. For simplicity, we used a small set
of simple stimulus patterns. The proposed mechanism can also be used for recognition
of more complex patterns (e.g. 3d visual objects), if it is incorporated in a hierarchical
multi-layer network architecture with feedback inhibition from higher to lower layers.
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Chapter 4

Discussion

For object recognition it is necessary to discriminate between very similar visual pat-
terns, but also to decide, whether two similar but slightly different patterns represent
different views of the same object or different objects. In this dissertation I have put
forward four hypotheses addressing these challenges in spiking neural networks.

Sustained Neural Activity can Serve as a Trace Rule

First, I proposed that sustained neural activity can serve as a trace rule for invari-
ance learning. In our model (Michler, Eckhorn, and Wachtler, 2009), sustained firing
of neurons in the map layer E1 is enabled by short-range lateral connections with
excitatory AMPA- and NMDA-mediated synapses. Lateral inhibition contained this
activity to localized activity peaks. Before learning, feedforward synapses (E0 to E1)
were initialized with equal weights, and activity dynamics in layer E1 was driven
internally. As learning progressed, E1 neurons gained selectivity for presented input
patterns. Because the activity peak moved continuously across the map layer, suc-
cessive input patterns tended to be represented within a local neighborhood. This
is similar to the effect of a synaptic trace rule, which binds temporally correlated
patterns to the same output neuron.

Topographic Maps can Represent Temporal Correlations

The second hypothesis was that topographic maps can represent temporal correla-
tions. To test this, the network was trained with stimulus sets that were designed
with homogeneous spatial correlations along two axis in a 2D feature space. By
switching temporal correlations from one axis to the other, effects of temporal corre-
lations on learned topographic maps could be analyzed. Results showed that selecti-
vity patches for the continuously and fast changing feature dimension were smaller
than patches for the "slow" dimension. After training the network on the same
stimulus set but with switched axis of temporal correlation, the selectivity pattern
switched too, proving that neighborhood relations in the learned maps represent not
only spatial but also temporal correlations.

Topographic Maps can Enable Invariance

Third, I hypothesized that topographically ordered representations of object views
could enable invariant response properties, thereby facilitating invariant object recog-
nition. Indeed, neurons in layer E2, which pooled over local neighborhoods in E1,
showed high selectivity to the "slow" stimulus dimension and invariance with re-
spect to the continuously changing dimension.
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Adaptive Feedback Inhibition can Improve Learning

The fourth hypothesis was that adaptive feedback inhibition (AFI) can improve dis-
crimination learning for very similar stimuli. A comparison of learned representa-
tions for stimulus sets with increasing degree of overlap in chapter 3.2 showed that
with AFI the network could discriminate patterns with higher degree of overlap
than without AFI. Furthermore, with AFI fewer training trials were needed to learn
stable representations.

4.1 Invariant Object Recognition

A comparison of the different approaches for learning the underlying connectivity
reveals that, despite the improvements in object recognition performance, we still
lack a good understanding of the learning processes that are used in the brain to
build invariant object representations. Models of spiking neural networks (SNNs),
like the ones presented in this dissertation, can improve our insights into how learn-
ing occurs in biological neural networks.

Advances in Computer Vision

While it is easy for humans to invariantly identify objects over a large range of view-
ing conditions, this task was a major stumbling block for computer vision systems
(Pinto, Cox, and DiCarlo, 2008). In the last decade, huge progress was made due
to improved computer hardware (especially the use of graphic processing units,
GPUs) and the popularization of Convolutional Neural Networks (CNNs) (Krizhevsky,
Sutskever, and Hinton, 2012; Kriegeskorte, 2015). In recent years, CNN-based mod-
els have dominated the annual ImageNet Large Scale Visual Regocnition Challenge (Rus-
sakovsky et al., 2015), in which research groups compete for the best performance in
image recognition tasks on the ImageNet dataset (Deng et al., 2009). With larger and
deeper models getting better every year, He et al. (2015) were the first to surpass the
performance of a human expert. A year later they further improved and set a new
record (He et al., 2016).

In these models, invariance is achieved through alternating template matching
and pooling operations (section 1.3, Figure 1.2), similar to the model for simple and
complex cells in primary visual cortex (Hubel and Wiesel, 1962). While in our model
(Michler, Eckhorn, and Wachtler, 2009) individual map layer neurons perform a sim-
ilar template matching operation (based on Hebbian learning instead of backpropa-
gation), invariance is achieved in layer E2 neurons by pooling over a local neighbor-
hood of the topographically organized feature map.

Learning Invariance

Whereas the connections in the HMAX model are hard wired, CNNs use backprop-
agation algorithms, which adjust their weights for filtering and pooling operations
to minimize the error of the network output (Werbos, 1990). To calculate this error,
the desired output (e.g. the correct label for an input image) must be known. Thus,
backpropagation is only possible if large labeled datasets are available to train the
network. Although backpropagation has been proven to be an extremely powerful
algorithm, it is not considered biologically plausible for a number of reasons (Ben-
gio et al., 2015): First, it is not obvious where the error signal should come from.
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Second, there is no biologically plausible mechanism that could propagate the error
signal backwards across multiple synapses and neurons.

Hebbian learning rules (section 1.2) provide a biologically plausible mechanism
for unsupervised learning of simple cells and higher order feature detectors (like the
composite cells in HMAX). For unsupervised learning of connections for the pooling
operation, temporal contiguity is utilized by Földiák’s trace rule (Földiák, 1991). This
has been successfully applied to learn translation invariance (Wallis and Rolls, 1997)
and invariance for the viewing angle of 3D objects (Stringer and Rolls, 2002).

Because the trace rule only relies on information that is available locally at the
synapse, it is biologically more plausible than backpropagation. While it has been
applied successfully in rate-coded neural network models to learn translation in-
variance (Wallis and Rolls, 1997) and invariance for the viewing angle of 3D objects
(Stringer and Rolls, 2002), it is still unclear whether it is suitable for temporal conti-
guity based learning in spiking neural networks as well.

Gaze-Invariance with Topographic Maps

Philipp (2013) applied the concept of invariance learning with topographic maps to
the problem of gaze-invariance. He used a network architecture with a map forma-
tion layer similar to Michler, Eckhorn, and Wachtler (2009). In Philipp’s model, the
map layer received input from two sources: a retinotopic layer and a layer coding
the gaze direction. The map layer learned representations that enable the output
layer to signal the presence of an object in head-centered coordinates.

4.2 Trace Learning in Spiking Neural Networks

Is there a biological equivalent of Földiák’s memory trace (Földiák, 1991) that could
enable temporal contiguity based learning in the brain? One possible answer is that
the memory trace is directly built into specialized types of synapses, as proposed by
Evans and Stringer (2012). A second possibility is that the intrinsic network activity
could provide a memory trace as in our model analyzed in section 3.1 (Michler,
Eckhorn, and Wachtler, 2009).

Evans and Stringer (2012) implemented trace learning by using a long time con-
stant of 150 ms for excitatory synaptic conductances. This can be interpreted as glu-
tamergic synapses with exclusively NMDA receptors and no AMPA receptors (even
though the voltage dependence of NMDA conductances was not modeled; compare
equation 7 in Michler, Eckhorn, and Wachtler, 2009). This results in very high firing
rates of approximately 200 Hz, which Evans and Stringer describe as being "towards
the edge" of the biologically plausible range. When an output neuron is already se-
lective for a stimulus A1 but not for stimulus A2, this long time constant will cause
the neuron to continue firing after the input switches from A1 to A2. Therefore,
synaptic weights from input A2 to this output neuron will be strengthened, and in
the future the neuron will also respond to stimulus A2. Assuming A1 and A2 repre-
sent different transformations of the same object A, after learning, the output neuron
responds to A invariantly with respect to that transformation.

Stringer et al. (2006) have demonstrated that a continuum of spatial correlations
between object views can also be exploited for learning of invariant representations.
This mechanism is referred to as continuous transformation (CT) learning. To sepa-
rate trace learning from effects of CT learning, Evans and Stringer excluded spatial
correlations by using stimuli without any overlap. Therefore, it remains open how
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their model would cope with considerable spatial correlations between individual
stimuli, which is a challenge in realistic object recognition tasks. This question could
be answered by training their network with stimulus sets that separate the effects of
temporal and spatial correlations (Figure 2, page 26).

For stimulus sets with balanced spatial correlations, changing the temporal or-
der of stimuli during learning significantly changed the learned topographic maps.
However, using a stimulus set with strong spatial correlations along one feature
dimension only (object identity), spatial correlations dominated the learned maps
(COIL stimulus set in Figure 6 C, page 29).

The invariance mechanism in our model also relies on neurons sustaining their
activity after a stimulus, which is achieved via excitatory input from lateral con-
nections. A major difference to the model by Evans and Stringer is that different
transformations of the same object will not be bound to the same neuron, but to neu-
rons within the local neighborhood. In this way, each E1 neuron is highly selective
for a single stimulus (e.g. a viewing angle of a specific object). Invariance emerges
by topographically mapping views of the same object onto a local neighborhood in
E1 and E2 neurons pooling over these local neighborhoods.

4.3 Sustained Intrinsic Activity

In our model for invariance learning (chapter 3.1), formation of topographic maps
in layer E1 relied on persistent activity of local groups of neurons. In the initial
stages of learning, this persistent activity slowly moved across layer E1 in a random
walk. Temporally correlated input patterns were therefore likely to be represented
by nearby neurons. For this mechanism to work properly, the balance between for-
ward input from layer E0 and lateral recurrent input from other E1 neurons is criti-
cal.

If lateral connections between E1 neurons are too strong, layer E1 is dominated
by its intrinsic persistent activity. Therefore, forward connections from the input
layer have no effect, and E1 neurons do not become selective for trained input pat-
terns. On the other hand, if lateral connections are too weak, E1 neurons will not
exhibit persistent activity, and temporal correlations are not captured in the learned
maps.

Urbanczik and Senn (2014) proposed a synaptic learning rule based on a den-
dritic prediction error. Instead of using a point neuron model, they simulated a
somatic and a dendritic compartment. Their rule adjusts the weight of dendritic
synapses in such a way that the dendritic membrane potential predicts the somatic
firing rate. They showed that formation of topographic maps is possible when using
somatic synapses for lateral connections and dendritic synapses for plastic forward
connections from input neurons. When they trained this network with a stimulus
set that consists of three clusters of correlated patterns, the network learned topo-
graphic maps that reflected these spatial correlations. Because lateral somatic con-
nections only had a weak nudging effect on the somatic membrane potential, they
did not induce persistent activity.

It would be interesting to test if this learning rule could also be utilized to learn
topographic maps that reflect temporal correlations. Instead of persistent activity,
longer delays in lateral connections could be used to map presented input patterns
to neighboring neurons.
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4.4 Empirical Evidence for the Role of Temporal Contiguity

A core feature of the model presented in chapter 3.1 is that temporal contiguity in in-
put sequences is utilized to associate different views of the same object. Psychophys-
ical experiments inspired by this idea found evidence that temporal contiguity also
plays a role for face recognition in humans. When views of faces are presented in
rapid sequences, response times were faster compared to slow sequences (180 vs.
720 ms per view, Arnold and Sieroff, 2012).

Temporal Smoothness Improves Object Representations

By fully controlling and systematically manipulating the visual environment of new-
born chickens, Wood and Wood (2018) evaluated the relationship between temporal
smoothness and learning of invariant object representations. Chickens were raised
within a "controlled-rearing chamber" where views of virtual 3D objects were pre-
sented during the first week of their life. In one condition ("smooth") the viewing an-
gle of the virtual objects changed continuously, whereas in the other ("non-smooth")
views were presented in a scrambled order. They found that newborn chickens de-
veloped more abstract object representations when exposed to temporally smooth
objects. This experimental setup was focused on the aspect of continuous transfor-
mation learning (Stringer et al., 2006).

Because in most training conditions used in our studies spatiotemporal smooth-
ness was not excluded, but controlled (by changing the axis of temporal proximity:
"X slow" vs "Y slow"), results of Wood and Wood (2018) are not strictly comparable
to our model predictions. The training conditions most similar to their experimen-
tal design are simulations using the COIL data set as shown in section 3.1 (page
29, Figure 6 C). In the "Y slow" condition with continuously changing viewing an-
gles (corresponding to the "smooth" condition in Wood and Wood, 2018), layer E2
responses were object selective (high "Y" selectivity), whereas in the "X slow" con-
dition, selectivity indices were near the diagonal, indicating a less object specific
abstract representation. However, the "X slow" condition does not exactly match
their "non-smooth" condition, because in our simulations not one, but many objects
were used for training, and views of the same object were not scrambled, but views
of other objects were presented between views of the same object. In future sim-
ulations, our network could be trained with the same stimulus design as used by
Wood and Wood (2018) in order to compare learned representations of the model
with their experimental results and to untangle effects of temporal proximity from
those of spatiotemporal continuity.

Temporal Proximity vs Spatiotemporal Correlations

Tian and Grill-Spector (2015) conducted a series of psychophysical experiments with
the goal to separate contributions of temporal proximity and spatiotemporal con-
tinuity to the formation of invariant object representations. In an unsupervised
training phase, participants saw views of novel 3D objects either in random order
(temporal proximity condition) or in a sequence resembling a continuously rotat-
ing object (spatiotemporal continuity condition). Object views spanned a 180◦ view
space, with neighboring views either 7.5◦ (high similarity condition) or 30◦ apart
(low similarity condition). In a test phase, participants were shown pairs of object
views and decided whether or not the images showed the same object. In one series
of experiments, test views were identical to the views used in training (known view
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condition). In another, test views were in between trained views, 3.75◦ (for high sim-
ilarity), or 7.5◦ or 15◦ (for low similarity) away from the nearest trained view (novel
view condition).

When trained with high similarity and tested with known views, there was no
advantage in the condition with spatiotemporal continuity compared to temporal
proximity. This result is consistent with predictions of continuous transformation
learning Stringer et al. (2006). When tested with novel views, similarity between
trained views had a significant influence. In the high similarity condition, recog-
nition performance after training with spatiotemporal continuity did not change
significantly compared to the performance after training with temporal proximity.
However, after training with low similarity, performance was better for the spa-
tiotemporal continuity condition. This suggests that spatiotemporal correlations
support learning of representations that enable recognition of interpolated views
in between learned views.

The stimulus paradigms used by Tian and Grill-Spector (2015) could be applied
to our model to compare their psychophysical results with the emerging proper-
ties in our network. If our model was trained with low similarity between neigh-
boring object views, in the spatiotemporal continuity condition I would expect that
neighboring views of the same object would be represented nearby within an object
patch. However, in the temporal proximity condition with random order of views
of the same object, I would expect that on average, neighboring object views are
represented further apart in the topographic map. This would cause lower recog-
nition performance for novel test stimuli that are in between learned views, consis-
tent with their experimental findings. I expect this because the novel view would
weakly activate representations of neighboring trained views. In the spatiotempo-
ral continuity condition, these weakly activated representations would be nearby
within the topographic map and therefore have stronger mutual support through
recurrent short-range excitatory lateral connections. In the temporal proximity con-
dition, weakly activated representations would be further apart and therefore have
less mutual support. As a consequence, activation of corresponding object invariant
neurons in layer E2 would be weaker, and recognition performance should decrease.

Tian and Grill-Spector (2015) hypothesized that ”spatiotemporal continuity might
provide broader view tuning compared to temporal proximity.” As described above,
a representation based on topographic maps could explain these broader tuning
curves.

4.5 Adaptive Feedback Inhibition and Predictive Coding

The theory of predictive coding assumes that the brain does not passively respond to
sensory inputs, but predicts what should come next based on what it has learned
from past regularities (Rao and Ballard, 1999). In line with this theory, Alink et al.
(2010) have found reduced responses for predictable stimuli in the primary visual
cortex using functional magnetic resonance imaging.

The Adaptive Feedback Inhibition (AFI) model presented in chapter 3.2 demon-
strates how, in a network of spiking neurons, inhibitory feedback connections that
are adjusted by spike-timing dependent plasticity (STDP) can speed up learning and
improve internal representations of trained stimuli. This is a biologically plausi-
ble implementation of one aspect of predictive coding: subtraction of a prediction
from the actual input. Feedback signals from a higher area of feature detectors to
a lower level area can be interpreted as a prediction or reconstruction of detected
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patterns. When inhibitory connections suppress input activity that corresponds to
already learned patterns, non-matching parts of the input become more salient and
can be learned faster. This model shows how a biologically plausible implementa-
tion of predictive coding is possible, and thereby available for learning in the brain.

Hierarchical Models for Predictive Coding

As a proof-of-principle, only a small set of very simple generic patterns was used in
our study. For recognition of more complex and realistic patterns, the AFI mecha-
nism could be incorporated in a hierarchical multi-layer network architecture. An
example of predictive coding in a hierarchical network architecture are autoencoders,
which generate a prediction of the input from an internal representation and use the
difference to guide learning (Hinton and Salakhutdinov, 2006). Despite the fact that
this type of network is also trained using the backpropagation algorithm, it does not
need huge labeled data sets to learn useful object representations as is the case for
CNNs. Instead, the difference between pixel pattern in the output and input layer
is used as an error signal. When trained with natural images, such networks can
learn sparse representations similar to those found in the visual cortex (Vincent et
al., 2010).

Whereas autoencoders use the difference between input and output as an error
signal to adjust weights in all layers of the hierarchy, a biologically more plausible
approach is to calculate a prediction error in each layer of the hierarchy. Spratling
(2017) showed how predictive coding in a two-stage hierarchical network can be
applied to problems like recognition of hand-written letters.

The examples reviewed so far apply the predictive coding principle to static in-
puts. In natural viewing situations, input patterns change over time, and consec-
utive inputs are correlated. In a network using the AFI mechanism, the feedback
activity generated by past input patterns would coincide with current inputs. Feed-
back connections adjusted with an STDP-based learning rule could therefore learn to
predict temporal changes in input patterns. Lotter, Kreiman, and Cox (2016) demon-
strated how a network, only optimized to predict future frames of video sequences
("PredNet"), develops internal representations suitable for invariant object recogni-
tion.

Predictive Coding in the Auditory System

Several experimental studies have shown effects that are consistent with the as-
sumption that predictive coding plays a crucial role in sensory processing. In elec-
troencephalography studies of the auditory system, a phenomenon known as mis-
match negativity (MMN) was observed (Näätänen and Alho, 1995). The MMN is an
enhanced response that can be measured when an unexpected "deviant" auditory
event is occasionally inserted into a repetitive series of "standard" auditory stimuli.
A model of the auditory cortex, based on predictive coding, accounts for critical
features of the MMN (Wacongne, Changeux, and Dehaene, 2012). Similar to the mi-
crocircuit proposed by us (Figure 8 in Michler, Wachtler, and Eckhorn, 2006), Wacon-
gne, Changeux, and Dehaene (2012) used activity of layer 2/3 pyramidal neurons as
prediction signals. They interpreted the interaction of excitatory feedforward input
and inhibitory feedback in layer 4 as a calculation of a prediction error. To enable
predictions based on past stimuli, layer 2/3 neurons are connected to a short-term
memory module that keeps a trace of past activity.
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Minimizing Free Energy

Friston (2010) has put predictive coding in the context of minimizing "free energy".
In this conceptual framework, free energy is related to the amount of surprise about
sensory input. By adjusting the internal model about the causes of sensory input in
a way that sensory input can be "explained away" (predicted) by the internal rep-
resentation, surprise and therefore free energy is minimized. As an example, let us
assume that two similar input patterns are represented by activity of the same out-
put neuron. The overlapping part of both patterns is explained away by the internal
representation, whereas the unique part of the actual stimulus is a surprise. Once the
two stimuli are represented by two different output neurons, the amount of uncer-
tainty, and thereby free energy, is reduced, because also the unique part of the stim-
ulus patterns is explained away by the internal representation. Adaptive feedback
inhibition enhances the surprising part of sensory inputs relative to the predicted
part, and higher level internal representations can be adjusted via competition and
Hebbian learning.

Activity of Prediction and Error Neurons

In a recent review of empirical evidence for predictive coding, Heilbron and Chait
(2018) argue that, according to predictive coding models, activity differences be-
tween neurons in superficial and deep cortical layers should be expected. In predic-
tive coding models, forward connections carry the error signal and feedback con-
nections the prediction signal. Whereas forward connections originate from superfi-
cial pyramidal neurons (layer 2/3), feedback originates from deep layers (pyramidal
neurons in layer 5/6). Therefore, prediction and error computations should have dis-
tinct laminar profiles. However, of the few studies addressing this issue, one found no
activity difference between superficial and deep layers (Szymanski, Garcia-Lazaro,
and Schnupp, 2009), and another found that attenuation was much stronger in deep
layers (Rummell, Klee, and Sigurdsson, 2016).

Contrary to the assumption by Heilbron and Chait, an implementation of predic-
tive coding with spiking neurons would not necessarily predict stronger attenuation
in error neurons compared to prediction neurons. In the adaptive feedback inhibi-
tion model (section 3.2), a correct prediction of sensory input by higher level neurons
reduces activity in both layers. When U1 neurons (Figure 1 in Michler, Wachtler, and
Eckhorn, 2006) are activated (prediction), U0 neurons representing sensory input
and prediction error are inhibited, thereby cutting off the input for U1. As a con-
sequence, U1 activity is reduced as well, reducing inhibition to U0 neurons so they
can start firing again. Thus, feedback inhibition generates oscillations, synchronizes
activity in U0, and reduces the total number of action potentials in both layers.

4.6 Combining AFI and Topographic Map Learning

Stimulus sets for the invariance-learning simulations (chapter 3.1) were designed
with an overlap of similar stimuli below 80 % to enable successful discrimination
in the map layer E1. This was done to study the temporal correlation based forma-
tion of topographic maps in isolation without introducing unnecessary complexity.
Further, the input layer dimensions of 20× 20 (for Gaussian and prism stimuli) and
24× 26× 8 (for COIL stimuli) were small enough to allow full connectivity from in-
put layer E0 to the map formation layer E1. To enable the network to learn invariant
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representations for more realistic stimulus sets with larger images and higher levels
of similarity, several enhancements of the model would be necessary.

First, the adaptive feedback inhibition (AFI) mechanism described in chapter 3.2
could be used: adaptive inhibitory connections can be added from layer E1 to E0
neurons. Second, similar to HMAX (Riesenhuber and Poggio, 1999) and VisNet
(Wallis and Rolls, 1997), the architecture of the model could be repeatedly applied
within a hierarchy. Connectivity between input layer and E1 neurons would be
spatially limited to form localized receptive fields. The pattern of lateral inhibi-
tion would have to be adjusted in order to limit competition, so neurons with non-
overlapping receptive fields would not inhibit each other. Instead of a single activity
peak, the input would then be represented by multiple peaks that are active simul-
taneously, leading to a parts-based representation, as was also proposed by Hosoda
et al. (2009).

Output of the pooling layer E2 could be used as input for the next map layer.
Within such a hierarchy, map layer neurons are similar to simple cells (S1 and S2
layers in Figure 1.2), whereas neurons pooling over local neighborhoods of map
layers correspond to complex cells (C1 and C2 in Figure 1.2).

Parker and Serre (2015) have extended the HMAX model to enable learning of
transformation sequences. They used a "temporal pooling" mechanism to arrange
local features of consecutive object views into the same pool of simple cells that con-
stitute the input for the MAX pooling operation of complex cells. The model was
trained with movie sequences of rotating objects. After training, they compared sen-
sitivity of the network to non-accidental properties (NAPs) and metric properties
(MPs). NAPs correspond to properties that are invariant to viewpoint, e.g. whether
an edge is straight or curved. In contrast, MPs change continuously with in-depth
rotation, like the length of an edge or the angle between two edges. They found
that complex cells showed higher selectivity for NAPs than for MPs, consistent with
behavioral and electrophysiological data (Biederman, 2007). I expect a similar selec-
tivity difference for NAPs vs MPs in a hierarchical version of the model proposed
in Michler, Eckhorn, and Wachtler (2009), because the "temporal pooling" in this ex-
tended HMAX model is similar to the pooling over a local neighborhood of map
neurons.

4.7 Why Study Spiking Neural Networks?

The fact that the biological brains operate with spiking neurons is an obvious reason
to continue research on spiking neural networks. However, rate-based models (like
CNNs) are getting better every year, even surpassing human performance in some
tasks like image classification (He et al., 2015) or playing the game of Go (Silver et al.,
2017). This begs the question whether there are still other reasons to study spiking
neural networks besides the quest to understand the human brain. The fundamen-
tal difference between spiking and rate-based neural networks is the mechanism by
which information is transmitted between neurons. In rate based models, the out-
put of a neuron must be transmitted to all its efferent neurons in every simulated
time interval, whereas in spiking neural networks, a transmission only needs to be
processed when the neuron spikes. Because only a small proportion of all neurons
are spiking at the same time, while the rest is silent, much less information needs
to be exchanged between neurons. This can translate into huge efficiency gains as
studies show that implemented neural networks in neuromorphic hardware (Khan
et al., 2008; Brüderle et al., 2011; Davies et al., 2018). Research of the capabilities and
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possible processing mechanisms in spiking neural network is necessary to make use
of these new hardware platforms.

Neuromorphic hardware can also be a valuable tool for computational neuro-
science research, as it enables simulating of much larger networks than what is pos-
sible on classical CPUs. The enhancements I proposed in section 4.6 would increase
the number of neurons by many magnitudes (at least by a factor of 10), compared
to the model described in Michler, Eckhorn, and Wachtler (2009). Because the num-
ber of synapses increases in a superlinear way, simulation times could become so
large that experiments with the model would become unfeasible. However, in neu-
romorphic hardware all neurons and synapses work in parallel (like in the brain), so
models can be scaled up and still run fast enough to work with.

4.8 Conclusion

The topographic order of representations in self-organizing maps can be influenced
by temporal correlations. Simulations with spiking neural networks have demon-
strated how the temporal order of views of visual objects can be encoded in the
spatial neighborhood relations within a cortical area. Such topographic maps can
emerge from unsupervised learning with Hebbian learning rules that operate on a
fast time scale, because sustained firing of local groups of neurons can provide a
memory trace, obviating the need for a synaptic trace rule. These results suggest a
mechanism that could be responsible for the formation of topographic object repre-
sentations in the inferotemporal cortex and offer an explanation for their functional
role.

Further, plastic inhibitory connections from a higher to a lower level within a
neural processing hierarchy can speed up the emergence of accurate representations
via unsupervised learning, in line with theories of predictive coding.

The mechanisms described in this dissertation, which are based on temporal
learning, topographic representations, and adaptive feedback inhibition, are most
likely not exclusive to the visual domain. If so, they can be adopted to other sensory
representations as well.
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